Advertisement

Communications in Mathematical Physics

, Volume 139, Issue 3, pp 551–557 | Cite as

On the essential spectrum of the transfer operator for expanding markov maps

  • Pierre Collet
  • Stefano Isola
Article

Abstract

The essential spectrum of the transfer operator for expanding markov maps of the interval is studied in detail. To this end we construct explicityly an infinite set of eigenfunctions which allows us to prove that the essential spectrum inC k is a disk whose radius is related to the free energy of the Liapunov exponent.

Keywords

Neural Network Free Energy Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba] Baladi, V.: Fonctions zêta, fonctions de corrélation et mesures d'équilibre pour quelques systèmes dynamiques non axiomeA. Thesis presented at the Faculty of Sciences, University of Geneva, 1989Google Scholar
  2. [BPPV] Benzi, R., Paladin, G., Parisi, G., Vulpiani, A.: J. Phys. A17, 513 (1984)Google Scholar
  3. [BR] Bohr, T., Rand, D.: Physica D25, 387 (1986)Google Scholar
  4. [Bo] Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lectures Notes in Mathematics, Vol.470. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  5. [CL] Collet, P., Lesne, A.: J. Stat. Phys.57, 967 (1989)Google Scholar
  6. [Ec] Eckmann, J.-P.: Resonances in dynamical systems. In: IXth International Congress on Mathematical Physics. July 1988, Swansea, Wales, Simon, B., Truman, A., Davies, I.M. (eds.). Bristol, New York: Adam Hilger 1989Google Scholar
  7. [El] Ellis, R.: Entropy, Large Deviations and Statistical Mechanics. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  8. [GH] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  9. [H] Haydn, N.T.A.: Meromorphic extension of the zeta function for Axiom A flows, Preprint (1989). To appear in Ergod. Th. Dynam. Sys.Google Scholar
  10. [K1] Keller, G.: On the rate of convergence to equilibrium in one-dimensional systems. Commun. Math. Phys.96, 181–193 (1984)Google Scholar
  11. [K2] Keller, G.: Markov extensions, zeta-functions, and Fredholm theory for piecewise invertible dynamical systems. Trans. Am. Math. Soc.314, 433–499 (1989)Google Scholar
  12. [Ka] Kato, T.: Perturbation theory of linear operators, II Ed. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  13. [M] Mañe, R.: Ergodic theory and differentiable dynamics. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  14. [N] Nussbaum, R.D.: The radius of the essential spectrum. Duke Math. J.37, 473–478 (1970)Google Scholar
  15. [P1] Pollicott, M.: Meromorphic extensions of generalized zeta functions. Invent. Math.85, 147–164 (1986)Google Scholar
  16. [P2] Pollicott, M.: The differential zeta function for Axiom A attractors. Ann. Math.131, 331–354 (1990)Google Scholar
  17. [R1] Ruelle, D.: Thermodynamic formalism. Reading, MA: Addison-Wesley 1978Google Scholar
  18. [R2] Ruelle, D.: Locating resonances for Axiom A dynamical systems. J. Stat. Phys.44, 281–292 (1987)Google Scholar
  19. [R3] Ruelle, D.: The thermodynamic formalism for expanding maps. Commun. Math. Phys.125, 239–262 (1989)Google Scholar
  20. [R4] Ruelle, D.: An extension of the theory of Fredholm determinants. Preprint IHES/P/89/38 (1989)Google Scholar
  21. [S] Sinai, Ya.G.: Gibbs measures in ergodic theory. Russ. Math. Surv.166, 21–69 (1972)Google Scholar
  22. [T] Tangerman, F.: Meromorphic continuation of Ruelle zeta functions. Boston University thesis (1986)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Pierre Collet
    • 1
  • Stefano Isola
    • 2
  1. 1.Centre de Physique Théorique de l'Ecole PolytechniquePalaiseau CédexFrance
  2. 2.Dipartimento di Matematica e FisicaUniversità di CamerinoCamerinoItaly

Personalised recommendations