Skip to main content
Log in

Fractal drums and then-dimensional modified Weyl-Berry conjecture

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the spectrum of the Dirichlet Laplacian in a bounded (or, more generally, of finite volume) open set Ω∈R n (n≧1) with fractal boundary ∂Ω of interior Minkowski dimension δ∈(n−1,n]. By means of the technique of tessellation of domains, we give the exact second term of the asymptotic expansion of the “counting function”N(λ) (i.e. the number of positive eigenvalues less than λ) as λ→+∞, which is of the form λδ/2 times a negative, bounded and left-continuous function of λ. This explains the reason why the modified Weyl-Berry conjecture does not hold generally forn≧2. In addition, we also obtain explicit upper and lower bounds on the second term ofN(λ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H.: Uber die asymptotische verteilung der Eigenverte. Gott. Nach. 110–117 (1911)

  2. Weyl, H.: Das asymptotische verteilungsgesetz der Eigenwerte linearer partieller differential-gleichungen. Math. Ann.71, 441–479 (1912)

    Google Scholar 

  3. Birman, M., Solomjak, M.: On the principal term of the spectral asymptotics for non-smooth elliptic problems. Funktsional Anal. i. Prilozhen.4, No. 4, 1–13 (1970); English translation in Funct. Anal. Appl.4, (1970)

    Google Scholar 

  4. Fleckinger, J., Metivier, G.: Théorie spectrale des opérateurs uniformement elliptiques sur quelques ouverts irreguliers. C.R. Acad. Sci. Paris Sér.A 276, 913–916 (1973)

    Google Scholar 

  5. Metivier, G.: Etude asymptotique des valeurs propres et de la fonction spectrale de problèmes aux limites. Thèse de Doctorat d'Etat, Mathematiques, Université de Nice, France, 1976

    Google Scholar 

  6. Metivier, G.: Valeurs propres de problèmes aux limites elliptiques irreguliers. Bull. Soc. Math. France, Mém.51–52, 125–219 (1977)

    Google Scholar 

  7. Lapidus, M.L., Fleckinger, J.: The vibrations of a “fractal drum”. Lecture Notes in Pure and Appl. Math., Diff. Equa., N.Y.-Basel: Marcel Dekker, 1989, pp. 423–436

    Google Scholar 

  8. Lapidus, M.L., Fleckinger, J.: Tambour fractal: Vers une resolution de la conjecture de Weyl-Berry pour les valeurs propres du Laplacian. C.R. Acad. Sci. Paris, Sér., I Math.306, série 1, 171–175 (1988)

    Google Scholar 

  9. Fleckinger, J.: On eigenvalue problems associated with fractal domains. Pitman Research Notes in Math. Series,216, Proceedings of the Tenth Dundee Conference, 1989, pp. 60–72

  10. Lapidus, M.L.: Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. Am. Math. Soc.325, 465–529 (1991)

    Google Scholar 

  11. Vassiliev, D.: One can hear the dimension of a connected fractal inR 2. In: Petkov & Lazarov-Integral Equations and Inverse problems, London: Longman Academic, Scientific & Technical, 1991, pp. 270–273

    Google Scholar 

  12. Kac, M.: Can one hear the shape of a drum? Am. Math. Monthly (Slaught Memorial paper, No. 11) (4)73, 1–23 (1966)

    Google Scholar 

  13. Seeley, R.T.: A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain ofR 3. Adv. in Math.29, 244–269 (1978)

    Google Scholar 

  14. Seeley, R.T.: An estimate near the boundary for the spectral function of the Laplace operator. Am. J. Math.102, 869–902 (1980)

    Google Scholar 

  15. Ivrii, V.Ja.: Second term of the spectral asymptotic expansion of the Laplace-Betrami operator on manifolds with boundary. Funct. Anal. Appl.14, 98–106 (1980)

    Google Scholar 

  16. Irvii, V.Ja.: Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary. Lecture Notes in Math., Vol.1100, Berlin, Heidelberg, New York: Springer-Verlag, 1984

    Google Scholar 

  17. Melrose, R.: Weyl's conjecture for manifolds with concave boundary. Geometry of the Laplace Operator. Proc. Symp. Pure Math., Vol.36, Providence, RI: Am. Math. Soc. 1980

    Google Scholar 

  18. Melrose, R.: The trace of the wave group. Contemp. Math., Vol.5, Providence, RI: Am. Math. Soc., 1984, pp. 127–167

    Google Scholar 

  19. Hörmander, L.: The analysis of linear partial differential operators. Vol. III and IV, Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  20. Vassiliev, D.: Asymptotics of the spectrum of a boundary value problem. Trudy Moscow Math. Obsch.49, 167–237 (1986); English translation in Trans. Moscow Math. Soc., 1987

    Google Scholar 

  21. Berry, M.V.: Distribution of modes in fractal resonators. Structural stability in physics. Berlin, Heidelberg, New York: Springer 1979, pp. 51–53

    Google Scholar 

  22. Berry, M.V.: Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals. In: Geometry of the Laplace Operator, Proc. Symp. Pure Math. Vol.36, Providence, RI: Am. Math. Soc., 1980, pp. 13–38

    Google Scholar 

  23. Brossard, J., Carmona, R.: Can one hear the dimension of a fractal. Commun. Math. Phys.104, 103–122 (1986)

    Google Scholar 

  24. Lapidus, M.L., Pomerance, C.: Fonction zèta de Riemann et conjecture de Weyl-Berry pour les tambour fractals. C.R. Acad. Sci. Paris Sér. I Math.310, (1990)

  25. Lapidus, M.L., Pomerance, C.: The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. London Math. Soc. (3)66, 41–69 (1993)

    Google Scholar 

  26. Lapidus, M.L.: Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. Diff. equa. and Math. Phys., C. Bennewitz ed., New York: Academic Press, 1991, pp. 152–182

    Google Scholar 

  27. Fleckinger, J., Vassiliev, D.G.: Tambour fractal: Example d'une formule asymptotique à deux terms pour la “fonction de comptage”. C.R. Acad. Sci. Paris, t.311, Série I, 867–872 (1990)

    Google Scholar 

  28. Fleckinger, J., Vassiliev, D.G.: An example of a two term asymptotics for the “counting function” of a fractal drum. Trans. Am. Math. Soc.337 (1), 99–116 (1993)

    Google Scholar 

  29. Chen Hua, Sleeman, B.D.: The modified Weyl-Berry conjecture. Applied Analysis Report, Univ. of Dundee, AA/903 (1990)

  30. Mandelbrot, B.B.: The fractal geometry of nature. Rev. and enl. ed., New York: W. H. Freeman, 1983

    Google Scholar 

  31. Gauss, C.F.: Disquisitiones arithmeticae. Leipzig, 1801

  32. Reed, M., Simon, B.: Methods of modern Math. Phys.IV New York: Academic Press, 1978

    Google Scholar 

  33. Chen Jing-run., The lattice-points in a circle. Acta. Math. Sinica, Vol.13, No. 2, (1963)

  34. Lapidus, M.L.: Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl-Berry conjecture. Proc. Dundee Conference on “Ordinary and partial differential equations”, Vol. IV, 1993, pp. 126–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, C., Sleeman, B.D. Fractal drums and then-dimensional modified Weyl-Berry conjecture. Commun.Math. Phys. 168, 581–607 (1995). https://doi.org/10.1007/BF02101845

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101845

Keywords

Navigation