Skip to main content
Log in

An algebraic spin and statistics theorem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A spin-statistics theorem and a PCT theorem are obtained in the context of the superselection sectors in Quantum Field Theory on a 4-dimensional spacetime. Our main assumption is the requirement that the modular groups of the von Neumann algebras of local observables associated with wedge regions act geometrically as pure Lorentz transformations. Such a property, satisfied by the local algebras generated by Wightman fields because of the Bisognano-Wichmann theorem, is regarded as a natural primitive assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H., Haag, R., Kastler, D., Takesaki, M.: Extensions of KMS states and chemical potential. Commun. Math. Phys.53, 97–134 (1977)

    Google Scholar 

  2. Bisognano, J., Wichmann, E.: On the duality condition for a Hermitian scalar field. J. Math. Phys.16, 985–1007 (1975)

    Google Scholar 

  3. Bisognano, J., Wichmann, E.: On the duality condition for quantum fields. J. Math. Phys.17, 303–321 (1976)

    Google Scholar 

  4. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. New York: McGraw-Hill, 1965

    Google Scholar 

  5. Borchers, H.J.: Local rings and the connection between spin and statistics. Commun. Math. Phys.1, 281–307 (1965)

    Google Scholar 

  6. Borchers, H.J.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys.143, 315 (1992)

    Google Scholar 

  7. Borchers, H.J.: On the converse of the Reeh-Schlieder theorem. Commun. Math. Phys.10, 269–273 (1968)

    Google Scholar 

  8. Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys.156, 201–219 (1993)

    Google Scholar 

  9. Brunetti, R., Guido, D., Longo, R.: Group cohomology, modular theory and space-time symmetries. Rev. Math. Phys.7, 57–71 (1995)

    Google Scholar 

  10. Buchholz, D., Epstein, H.: Spin and statistics of quantum topological charges. Fizika3, 329–343 (1985)

    Google Scholar 

  11. Buchholz, D., Fredenhagen, K.: Locality and structure of particle states. Commun. Math. Phys.84, 1–54 (1982)

    Google Scholar 

  12. Buchholz, D., Summers, S.J.: An algebraic characterization of vacuum states in Minkowski space. Commun. Math. Phys.155, 442–458 (1993)

    Google Scholar 

  13. Burgoyne, N.: On the connection of spin with statistics. Nuovo Cimento8, 807 (1958)

    Google Scholar 

  14. Dell'Antonio, G.F.: On the connection of spin with statistics. Ann. Phys.16, 153 (1961)

    Google Scholar 

  15. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I. Commun. Math. Phys.23, 199–230 (1971)

    Google Scholar 

  16. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particles statistics II. Commun Math. Phys.35, 49–85 (1974)

    Google Scholar 

  17. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math.73, 493–536 (1984)

    Google Scholar 

  18. Doplicher, S., Roberts, J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys.131, 51–107 (1990)

    Google Scholar 

  19. Dyson, F.J.: On the connection of weak local commutativity and regularity of Wightman functions. Phys. Rev.110, 579 (1958)

    Google Scholar 

  20. Fierz, M.: Uber die relativische Theorie kräftfreier Teilchen mit beliebigem spin. Helv. Phys. Acta12, 3 (1939)

    Google Scholar 

  21. Epstein, H.: CTP invariance in a theory of local observables. J. Math. Phys.8 750 (1967)

    Google Scholar 

  22. Guido, D., Longo, R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys.148, 521–551 (1992)

    Google Scholar 

  23. Guido, D., Longo, R.: The conformal spin and statistics theorem. Preprint. Brunetti, R., Guido, D., Longo, R.: in preparation

  24. Haag, R.: Local Quantum Physics. Berlin Heidelberg: Springer Verlag, 1992

    Google Scholar 

  25. Haag, R., Hugenoltz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys.5, 215 (1967)

    Google Scholar 

  26. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys.43, 199 (1975)

    Google Scholar 

  27. Haag, R., Kasler, D.: An algebraic approach to Quantum Field Theory. J. Math. Phys.5, 848–861 (1964)

    Google Scholar 

  28. Jost, R.: The general theory of Quantized Fields. Providence RI: Am. Math. Soc., 1965

    Google Scholar 

  29. Jost, R.: Eine Bemerkung zu CTP Theorem. Helv. Phys. Acta30, 409 (1957)

    Google Scholar 

  30. Kay, B.S.: A Uniqueness Result for Quasi-Free KMS States Helv. Phys. Acta58, 1017–1029 (1985)

    Google Scholar 

  31. Kuckert, B.: PCT und Kovarianz als modulare Strukturen. Diploma Thesis, Hamburg, in preparation

  32. Lipsman, R.L.: Group representations Lect. Notes in Math.388, Berlin, Heidelberg, New York: Springer Verlag, 1974

    Google Scholar 

  33. Landau, L.: On local functions of fields. Commun. Math. Phys.39, 49–62 (1974)

    Google Scholar 

  34. Longo, R.: Index of subfactors and statistics of quantum fields. I Commun. Math. Phys.126, 217–247 (1989); II130, 285–309 (1990)

    Google Scholar 

  35. Lüders, G.: Vertaugschungsrelationen zwischen verschiedenen Feldern. Z. Naturforsch.,13a, 254 (1958)

    Google Scholar 

  36. Lüders, G., Zumino, B.: Connection between spin and statistics. Phys. Rev.110, 1450 (1958)

    Google Scholar 

  37. Pauli, W.: On the connection between spin and statistics. Phys. Rev.58, 716 (1940)

    Google Scholar 

  38. Pauli, W.: Exclusion principle, Lorentz group and reflection of space time and charge. In: Biels Bohr and the Development of Physics, W. Pauli (ed.) New York: Pergamon Press, 1955

    Google Scholar 

  39. Schwinger, J.: On the theory of quantized fields I. Phys. Rev.82, 914 (1951)

    Google Scholar 

  40. Sewell, G.L.: Relativity of temperature and Hawking effect. Phys. Lett.79A, 23 (1980)

    Google Scholar 

  41. Strătilă, S., Zsido, L.: Lectures on von Neumann algebras. England: Abacus Press, 1979

    Google Scholar 

  42. Streater, R.F.: Local fields with the wrong connection between Spin and Statistics. Commun. Math. Phys.5, 88–96 (1967)

    Google Scholar 

  43. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and all that. Reading (MA): Benjamin, 1964

    Google Scholar 

  44. Takesaki, M.: Tomita theory of modular Hilbert algebras. Lect. Notes in Math.128, Berlin, Heidelberg, New York: Springer Verlag, 1970

    Google Scholar 

  45. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev.D14, 870 (1976)

    Google Scholar 

  46. Wightman, A.S.: Quantum field theory in terms of vacuum expectation values. Phys. Rev.101, 860 (1956)

    Google Scholar 

  47. Wiesbrock, H.V.: A comment on a recent work of Borchers. Lett. Math. Phys.25, 157–159 (1992)

    Google Scholar 

  48. Yngvason, J.: A note on essential duality. Lett. Math. Phys.31, 127–141 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Dedicated to Hans Borchers on the occasion of his seventieth birthday

Supported in part by MURST and CNR-GNAFA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guido, D., Longo, R. An algebraic spin and statistics theorem. Commun.Math. Phys. 172, 517–533 (1995). https://doi.org/10.1007/BF02101806

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101806

Keywords

Navigation