Skip to main content
Log in

Extreme differences in charge changes during protein evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The maintenance of a proper distribution of charged amino acid residues might be expected to be an important factor in protein evolution. We therefore compared the inferred changes in charge during the evolution of 43 protein families with the changes expected on the basis of random base substitutions. It was found that certain proteins, like the eye lens crystallins and most histones, display an extreme avoidance of changes in charge. Other proteins, like phospholipase A2 and ferredoxin, apparently have sustained more charged replacements than expected, suggesting a positive selection for changes in charge. Depending on function and structure of a protein, charged residues apparently can be important targets for selective forces in protein evolution. It appears that actual biased codon usage tends to decrease the proportion of charged amino acid replacements. The influence of nonrandomness of mutations is more equivocal. Genes that use the mitochondrial instead of the universal code lower the probability that charge changes will occur in the encoded proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow DJ, Thornton JM (1983) Ion-pairs in proteins. J Mol Biol 168:867–885

    PubMed  Google Scholar 

  • Bernardi G, Mouchiroud D, gautier C, Bernardi G (1988) Compositional patterns in vertebrate genomes: conservation and change in evolution. J Mol Evol 28:7–18

    PubMed  Google Scholar 

  • Blundell TL, Sibanda MJ, Sternberg MJE, Thornton JM (1987) Knowledge-based prediction of protein structures and the design of novel molecules. Nature 326:347–352

    Article  PubMed  Google Scholar 

  • Clarke B (1970) Selective constraints on amino-acid substitutions during evolution of proteins. Nature 228:159–160

    Article  PubMed  Google Scholar 

  • Dayhoff MO, Park CM, McLaughlin PJ (1972) Building a phylogenetic tree: cytochromec. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5. National Biomedical Research Foundation, Washington DC, pp 7–16

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, Suppl 3. National Biomedical Research Foundation, Washington DC

    Google Scholar 

  • Delaye M, Tardieu A (1983) Short-range order of crystallinproteins accounts for eye lens transparency. Nature 302:415–417

    Article  PubMed  Google Scholar 

  • Dickerson RE (1971) The structure of cytochromec and the rates of molecular evolution. J Mol Evol 1:26–45

    Article  PubMed  Google Scholar 

  • Doolittle RF (1979) Protein evolution. In: Neurath H, Hill RL (eds) The proteins, ed 2, vol 4. Academic Press, New York, pp 1–118

    Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    PubMed  Google Scholar 

  • Grantham R, Perrin P, Mouchiroud D (1986) In: Dawkins R, Ridley M (eds) Oxford surveys in evolutionary biology, vol 3, Oxford University Press, Oxford

    Google Scholar 

  • Honig BB, Hubbell WL, Flewelling RF (1986) Electrostatic interactions in membranes and proteins. Annu Rev Biophys Biophys Chem 15:163–193

    Article  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46:931–954

    Article  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  Google Scholar 

  • Li W-H, Wu C-I, Luo C-C (1984) Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol 21:58–71

    PubMed  Google Scholar 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441

    PubMed  Google Scholar 

  • Maruyama T, Gojobori T, Aota SI, Ikemura T (1986) Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 14:r151-r153

    PubMed  Google Scholar 

  • Matthews JB (1985) Electrostatic effects in proteins. Annu Rev Biophys Biophys Chem 14:387–417

    Article  PubMed  Google Scholar 

  • Miller S, Janin J, Lesk AM, Chothia C (1987) Interior and surface of monometric proteins. J Mol Biol 196:641–656

    Article  PubMed  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland Publishing Company, Amsterdam, p 25

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Google Scholar 

  • Peetz EW, Thomson G, Hedrick PW (1986) Charge changes in protein evolution. Mol Biol Evol 3:84–94

    PubMed  Google Scholar 

  • Perrin P, Bernardi G (1987) Directional fixation of mutations in vertebrate evolution. J Mol Evol 26:301–310

    PubMed  Google Scholar 

  • Perutz MF (1978) Electrostatic effects in proteins. Science 201:1187–1191

    PubMed  Google Scholar 

  • Peterson CA, Piatigorsky J (1986) Preferential conservation of the globular domains of the βA3/A1-crystallin polypeptide of the chicken eye lens. Differentiation 19:134–153

    Google Scholar 

  • Preparata G, Saccone C (1987) A simple quantitative model of the molecular clock. J Mol Evol 26:7–15

    PubMed  Google Scholar 

  • Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH (1985) Hydrophobicity of amino acid residues in globular proteins. Science 229:834–838

    PubMed  Google Scholar 

  • Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage patterns inEscherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster andHomo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–8211

    PubMed  Google Scholar 

  • Slingsby C (1985) Structural variation in lens crystallins. Trends Biochem Sci 10:281–284

    Article  Google Scholar 

  • Slingsby C, Driessen HPC, Mahadevan D, Bax B, Blundell TL (1988) Evolutionary and functional relationships between the basic and acidic β-crystallins. Exp Eye Res 46:375–403

    PubMed  Google Scholar 

  • Stapel SO, Zweers A, Dodemont HJ, Kan JH, de Jong WW (1985) ε-crystallin, a novel avian and reptilian eye lens protein. Eur J Biochem 147:129–136

    Article  PubMed  Google Scholar 

  • Sternberg MJE, Hayes FRF, Russell AJ, Thomas PG, Fersht AR (1987) Prediction of electrostatic effects of engineering of protein charges. Nature 330:86–88

    Article  PubMed  Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    PubMed  Google Scholar 

  • Summers LJ, Slingsby C, Blundell TL, den Dunnen JT, Moormann RJM, Schoenmakers JGG (1986) Structural variation in mammalian γ-crystallins based on computer graphics analyses of human, rat and calf sequences. I. Core packing and surface properties. Exp Eye Res 43:77–92

    PubMed  Google Scholar 

  • Tardieu A, Laporte D, Licinio P, Krop B, Delaye M (1986) Calf lens α-crystallin quaternary structure. A three-layer tetrahedral model. J Mol Biol 192:711–724

    Article  PubMed  Google Scholar 

  • Tomazic SJ, Klibanov AM (1988) Why is oneBacillus α-amylase more resistant against irreversible thermoinactivation than another? J Biol Chem 263:3092–3096

    PubMed  Google Scholar 

  • Vogel H, Zuckerkandl E (1971) The evolution of polarity relations in globins. In: Neyman J (ed) Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol 5, Darwinian, neo-Darwinian, and non-Darwinian evolution. University of California Press, Berkeley, pp 155–176

    Google Scholar 

  • Wada A, Nakamura H (1981) Nature of the charge distribution in proteins. Nature 293:757–758

    Article  PubMed  Google Scholar 

  • Waite M (1988) The phospholipases. In: Hanahan DJ (ed) Handbook of lipid research, vol. 5. Plenum, New York

    Google Scholar 

  • Warshel A, Russell ST (1984) Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys 17:283–422

    PubMed  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    Article  PubMed  Google Scholar 

  • Zuckerkandl E (1975) The appearance of new structures and functions in proteins during evolution. J Mol Evol 7:1–57

    Article  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leunissen, J.A.M., van den Hooven, H.W. & de Jong, W.W. Extreme differences in charge changes during protein evolution. J Mol Evol 31, 33–39 (1990). https://doi.org/10.1007/BF02101790

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101790

Key words

Navigation