Evolutionary conservation of DNA sequences expressed in sea urchin eggs and early embryos

Summary

DNA sequence divergence measurements indicate thatStrongylocentrotus franciscanus is more distinct fromS. purpuratus andS. drobachiensis than these two species are from each other, in agreement with paleontological and morphological evidence. The evolutionary divergence of several classes of expressed DNA sequences was compared with that of total single-copy DNA. BetweenS. franciscanus andS. purpuratus the divergence of cDNA made from gastrula cytoplasmic poly(A)+ RNA is about half that of total single-copy DNA. Similar results were obtained for cDNA made from unfertilized egg poly(A)+ RNA. In contrast, sequences expressed in gastrula nuclear RNA have diverged almost as much as total single-copy DNA.

This is a preview of subscription content, access via your institution.

References

  1. Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Methods Enzymol 29:363–406

    PubMed  Google Scholar 

  2. Britten RJ, Cetta A, Davidson EH (1978) The single copy DNA sequence polymorphism of the sea urchin,Strongylocentrotus purpuratus. Cell 15:1175–1186

    PubMed  Google Scholar 

  3. Busslinger M, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behavior of a sea urchin histone gene cluster. EMBO J 1:27–34

    Google Scholar 

  4. Cabrera C, Jacobs HT, Posakony JW, Grula JW, Roberts JW, Britten RJ, Davidson EH (1983) Transcripts of three mitochondrial genes in the RNA of sea urchin eggs and embryos. Dev Biol 97:500–505

    PubMed  Google Scholar 

  5. Costantini FD, Britten RJ, Davidson EH (1980) Message sequences and short repetitive sequences are interspersed in sea urchin egg poly(A)+ RNAs. Nature 287:111–117

    PubMed  Google Scholar 

  6. Davidson EH, Hough-Evans BR, Britten RJ (1982) Molecular biology of the sea urchin embryo. Science 217:17–26

    PubMed  Google Scholar 

  7. Durham JW (1966) Echinoids, classification. In: Moore RC (ed) Treatise on Invertebrate Paleontology. (U) Echinodermata 3(1). The Geological Society of America and the University of Kansas Press, Lawrence, pp 270–295

    Google Scholar 

  8. Efstratiadis A, Posakony JW, Maniatis T, Lawn R, O'Connell CD, Spritz RA, De Riel JK, Foget BG, Weissman SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NT (1980) The structure and evolution of the human β-globin gene family. Cell 21:653–668

    PubMed  Google Scholar 

  9. Grula JW, Hall TJ, Hunt JA, Giugni TD, Grahan GJ, Davidson EH, Britten RJ (1982) Sea urchin DNA sequence variation and reduced interspecies differences of the less variable DNA sequences. Evolution 36:665–676

    Google Scholar 

  10. Grunstein M, Schedl P, Kedes L (1976) Sequence analysis and evolution of sea urchin (Lytechinus pictus andStrongylocentrotus purpuratus) histone H4 messenger RNAs. J Mol Biol 104:351–369

    PubMed  Google Scholar 

  11. Hall TJ, Grula JW, Davidson EH, Britten RJ (1980) Evolution of sea urchin nonrepetitive DNA. J Mol Evol 16:95–110

    PubMed  Google Scholar 

  12. Harpold MM, Craig SP (1978) The evolution of nonrepetitive DNA in sea urchins. Differentiation 10:7–11

    PubMed  Google Scholar 

  13. Hough BR, Smith MJ, Britten RJ, Davidson EH (1975) Sequence complexity of heterogeneneous nuclear RNA in sea urchin embryos. Cell 5:291–299

    PubMed  Google Scholar 

  14. Hough-Evans BR, Wold BJ, Ernst SG, Britten RJ, Davidson EH (1977) Appearance and persistence of maternal RNA sequences in sea urchin development. Dev Biol 60:267–277

    Google Scholar 

  15. Hutton R, Wetmur JG (1973) Effect of chemical modification on the rate of renaturation of deoxyribonucleic acid. Deaminated and glyoxalated deoxyribonucleic acid. Biochemistry 12:558–563

    PubMed  Google Scholar 

  16. Hyman LH (1955) The invertebrates: echinodermata, vol IV. McGraw-Hill, New York, pp 413–589

    Google Scholar 

  17. Kohne DE, Chiscon JA, Hoyer BH (1971) Nucleotide sequence change in nonrepeated DNA during evolution. Carnegie Inst Wash Year Book 69:488–501

    Google Scholar 

  18. Konkel DA, Maizel JV, Leader P (1979) The evolution and sequence comparison of two recently diverged mouse chromosomal β-globin genes. Cell 18:865–873

    PubMed  Google Scholar 

  19. Kreitman M (1983) Nucleotide polymorphism at the alcohol dehydrogenase locus ofDrosophila melanogaster. Nature 304: 412–417

    PubMed  Google Scholar 

  20. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold-Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  21. Moore GP, Scheller RH, Davidson EH, Britten RJ (1978) Evolutionary change in the repetition frequency of sea urchin DNA sequences. Cell 15:649–660

    PubMed  Google Scholar 

  22. Mortensen T (1943) A monograph of the echinoidea. Camarodonta, number 3 of vol 3. CA Reizel, Copenhagen

    Google Scholar 

  23. Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    PubMed  Google Scholar 

  24. Posakony JW, Flytzanis CN, Britten RT, Davidson EH (1983) Interspersed sequence organization and developmental representation of cloned poly(A) RNAs from sea urchin eggs. J Mol Biol 167:361–389

    PubMed  Google Scholar 

  25. Richter JD, Smith LD, Anderson DM, Davidson EH (1984) Interspersed poly(A) RNAs of amphibian oocytes. J Mol Biol 173:227–241

    PubMed  Google Scholar 

  26. Smith AB (1981) Implications of lantern morphology for the phylogeny of post-Paleozoic echinoids. Paleontology 24:779–801

    Google Scholar 

  27. Sutcliffe JG (1979) Complete nucleotide sequence of theEscherichia coli plasmid pBR322. Cold Spring Harbor Symp Quant Biol 43:77–90

    PubMed  Google Scholar 

  28. van den Berg J, van Ooyen A, Manti N, Schamböck A, Grosveld G, Flavell RA, Weissman C (1978) Comparison of cloned rabbit and mouse β-globin genes showing strong evolutionary divergence of two homologous pairs of introns. Nature 276: 37–44

    PubMed  Google Scholar 

  29. Wold BJ, Klein WH, Hough-Evans BR, Britten RJ, Davidson EH (1978) Sea urchin embryo mRNA sequences expressed in the nuclear RNA of adult tissues. Cell 14:941–950

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roy J. Britten.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roberts, J.W., Johnson, S.A., Kier, P. et al. Evolutionary conservation of DNA sequences expressed in sea urchin eggs and early embryos. J Mol Evol 22, 99–107 (1985). https://doi.org/10.1007/BF02101688

Download citation

Key words

  • mRNA
  • egg RNA
  • Nuclear RNA
  • Sequence divergence
  • Thermal stability