Skip to main content
Log in

Hecke algebras at roots of unity and crystal bases of quantum affine algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a fast algorithm for computing the global crystal basis of the basic\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}_n )\)-module. This algorithm is based on combinatorial techniques which have been developed for dealing with modular representations of symmetric groups, and more generally with representations of Hecke algebras of typeA at roots of unity. We conjecture that, upon specializationq→1, our algorithm computes the decomposition matrices of all Hecke algebras at an th root of 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Olsson, J.B.: Partition identities with an application to group representation theory. J. Reine Angew. Math.413, 198–212 (1991)

    Google Scholar 

  2. Ariki, S.: On the decomposition numbers of the Hecke algebra ofG(m, 1,n). Preprint 1996

  3. Bessenrodt, C., Olsson, J.B.: On Mullineux symbols. J. Comb. Theory Ser. A68, 340–360 (1994)

    Google Scholar 

  4. Curtis, C., Reiner, I.: Methods of representation theory with applications to finite groups and orders. Vol. 1, New York: Wiley, 1981

    Google Scholar 

  5. Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Paths, Maya diagrams, and representations of\(\widehat{\mathfrak{s}\mathfrak{l}}(r,C)\). Adv. Stud. Pure Math.19, 149–191 (1989)

    Google Scholar 

  6. Davies, B., Foda, O., Jimbo, M., Miwa, T., Nakayashiki, A.: Diagonalization of the XXZ Hamiltonian by vertex operators. Commun. Math. Phys.151, 89–153 (1993)

    Google Scholar 

  7. Dipper, R., James, G.: Representations of Hecke algebras of general linear groups. Proc. Lond. Math. Soc.52, 20–52 (1986)

    Google Scholar 

  8. Dipper, R., James, G.: Blocks and idempotents of Hecke algebras of general linear groups. Proc. Lond. Math. Soc.54, 57–82 (1987)

    Google Scholar 

  9. Du, J.: Canonical bases for irreducible representations of quantumGL n . Bull. Lond. Math. Soc.24, 325–334 (1992)

    Google Scholar 

  10. Du, J.: Canonical bases for irreducible representations of quantumGL n II. J. Lond. Math. Soc.51, 461–470 (1995)

    Google Scholar 

  11. Duchamp, G., Krob, D., Lascoux, A., Leclerc, B., Scharff, T., Thibon, J.-Y.: Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras. Publ. RIMS, Kyoto Univ.31, 179–201 (1995)

    Google Scholar 

  12. Ford, B., Kleshchev, A.S.: A proof of the Mullineux conjecture. Preprint 1994

  13. Hayashi, T.:q-analogues of Clifford and Weyl algebras — Spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys.127, 129–144 (1990)

    Google Scholar 

  14. James, G.: The decomposition matrices ofGL n (q) forn≦10 Proc. Lond. Math. Soc.60, 225–265 (1990)

    Google Scholar 

  15. James, G., Kerber, A.: The representation theory of the symmetric group. Reading, MA: Addison-Wesley, 1981

    Google Scholar 

  16. James, G., Mathas, A.: Hecke algebras of typeA withq=−1. Preprint 1995

  17. James, G., Mathas, A.: Aq-analogue of the Jantzen-Schaper theorem. Preprint 1995

  18. Kac, V.: Infinite dimensional Lie algebras. Cambridge: Cambridge University Press, 1990

    Google Scholar 

  19. Kashiwara, M.: On crystal bases of theq-analogue of universal enveloping algebras. Duke Math. J.63, 465–516 (1991)

    Google Scholar 

  20. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J.69, 455–485 (1993)

    Google Scholar 

  21. Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J.73, 383–413 (1994)

    Google Scholar 

  22. Kazhdan, D., Lusztig, G.: Affine Lie algebras and quantum groups. Int. Math. Res. Not.2, 21–29 (1991)

    Google Scholar 

  23. Kleshchev, A.S.: Branching rules for the modular representations of symmetric groups I. J. Algebra (to appear)

  24. Kleshchev, A.S.: Branching rules for the modular representations of symmetric groups II. J. Reine. Angew. Math.459, 163–212 (1995)

    Google Scholar 

  25. Kleshchev, A.S.: Branching rules for the modular representations of symmetric groups III. Some corollaries and a problem of Mullineux. J. Lond. Math. Soc.2 (1995)

  26. Lakshmibai, V.: Bases for quantum Demazure modules II. Proc. Symp. Pure. Math.56, part 2, 149–168 (1994)

    Google Scholar 

  27. Lascoux, A.: Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall-Littlewood functions and unipotent varieties. In: “Algebraic Combinatorics, Rencontre 12–16 March 1995, Saint-Nabor, Ottrott, France”, Université Louis Pasteur, IRMA, Strasbourg 1995, pp. 183–207

    Google Scholar 

  28. Lascoux, A.: Leclerc, B., Thibon, J.-Y.: Une conjecture pour le calcul des matrices de décomposition des algèbres de Hecke de typeA aux racines de l'unité. C.R. Acad. Sci. Paris321, 511–516 (1995)

    Google Scholar 

  29. Lascoux, A.: Leclerc, B., Thibon, J.-Y.: Crystal graphs andq-analogues of weight multiplicities for the root systemA n . Lett. Math. Phys.35, 359–374 (1995)

    Google Scholar 

  30. Leclerc, B., Thibon, J.-Y.: Canonical bases ofq-deformed Fock spaces. Internat. Math. Research Notices 9 (1996)

  31. Lusztig, G.: Modular representations and quantum groups. Contemp Math.82, 59–77 (1989)

    Google Scholar 

  32. Macdonald, I.G.: Symmetric functions and Hall polynomials. 2nd edition. Oxford: Oxford Univ. Press 1995

    Google Scholar 

  33. Martin, S.: Schur algebras and representation theory. Cambridge: Cambridge University Press, 1993

    Google Scholar 

  34. Martin, S.: On the ordinary quiver of the principal block of certain symmetric groups. Quart. J. Math. Oxford Ser.40, 209–223 (1989)

    Google Scholar 

  35. Martin, S.: Ordinary quivers for symmetric groups. Quart. J. Math. Oxford Ser.41, 72–92 (1990)

    Google Scholar 

  36. Misra, K.C., Miwa, T.: Crystal base of the basic representation of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}_n )\). Commun. Math. Phys.134, 79–88 (1990)

    Google Scholar 

  37. Mullineux, G.: Bijections ofp-regular partitions andp-modular irreducibles of the symmetric groups. J. Lond. Math.20, 60–66 (1979)

    Google Scholar 

  38. Richards, M.J.: Some decomposition numbers for Hecke algebras of general linear groups.

  39. Robinson, G. De B.: Representation theory of the symmetric group. Edimburgh, 1961

  40. Zelevinsky, A.: Representations of finite classical groups, a Hopf algebra approach. Lect. Notes in Math.869. Berlin-Heidelberg-New York: Springer, 1981

    Google Scholar 

Supplementary reference

  1. Grojnowski, I.: Representations of affine Hecke algebras (and affine quantumGL n ) at roots of unity. Internat. Math. Research Notices5, 215–217 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Jimbo

Partially supported by PRC Math-Info and EEC grant n0 ERBCHRXCT930400.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lascoux, A., Leclerc, B. & Thibon, JY. Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Commun.Math. Phys. 181, 205–263 (1996). https://doi.org/10.1007/BF02101678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101678

Keywords

Navigation