Skip to main content

Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems

Abstract

A diversity of organisms are endowed with the ability to emit light, and to display and control it in a variety of ways. Most of the luciferins (substrates) of the various phylogenetically distant systems fall into unrelated chemical classes, and based on still limited data, the luciferases (enzymes) and reaction mechanisms are distinctly different. Based on its diversity and phylogenetic distribution, it is estimated that bioluminescence may have arisen independently as many as 30 times in the course of evolution. However, there are several examples of cross-phyletic similarities among the substrates; some of these may be accounted for nutritionally, but in other cases they may have evolved independently.

This is a preview of subscription content, access via your institution.

References

  1. Airth RL, Foerster GE, Behrens PQ (1966) The luminous fungi. In: Johnson FH, Haneda Y (eds) Bioluminescence in progress. Princeton University Press, Princeton, pp 203–223

    Google Scholar 

  2. Allen RC (1982) Biochemiexcitation: chemiluminescence and the study of biological oxygenation reactions. In: Adam W, Cilento G (eds) Chemical and biological generation of excited states. Academic Press, New York, pp 309–344

    Google Scholar 

  3. Anderson, JM (1980) Biochemistry of centipede bioluminescence. Photochem Phtobiol 34:179–181

    Google Scholar 

  4. Anderson JM, Charboneau H., Cormier MJ (1974) Mechanism of calcium induction ofRenilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry 13:1195–1200

    Article  PubMed  Google Scholar 

  5. Balny C, Hastings JW (1975) Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry 14:4719–4723

    Article  PubMed  Google Scholar 

  6. Becvar JE, Tu SC, Hastings JW (1978) Activity and stability of the luciferase-flavin intermediate. Biochemistry 17:1807–1812

    Article  PubMed  Google Scholar 

  7. Brehm P, Morin JG, Reynolds GT (1973) Bioluminescent characteristics of the ophiuroidOphiopsila californica. Biol Bull 145:426

    Google Scholar 

  8. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. John Wiley and Sons, New York

    Google Scholar 

  9. Buck J (1978) Functions and evolutions of bioluminescence. In: Herring P (ed) Bioluminescence in action. Princeton University Press, Princeton, pp 419–460

    Google Scholar 

  10. Bussinger M, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO J 1:27–33

    Google Scholar 

  11. Cormier JM (1978) Comparative biochemistry of animal systems. In: Herring PJ (ed) Bioluminescence in action. Academic Press, London, pp 75–108

    Google Scholar 

  12. Cormier, MJ, Dure LS (1963a) Studies on the bioluminescence ofBalanoglossus biminiensis extracts. I. Requirement for hydrogen peroxide and characteristics of the system. J Biol Chem 238:785–789

    Google Scholar 

  13. Cormier MJ, Dure LS (1963b) Studies on the bioluminescence ofBalanoglossus biminiensis. II. Evidence for the peroxidase nature of balanoglossid luciferase. J Biol Chem 238:790–793

    Google Scholar 

  14. Cormier MJ, Hori K, Karkhanis YD (1970) The conversion of luciferin to luciferyl sulfate by luciferin sulfokinase. Biochemistry 9:1184–1190

    Article  PubMed  Google Scholar 

  15. Cormier MJ, Hori K, Anderson JM (1974) Bioluminescence in coelenterates. Biochim Biophys Acta 346:137–164

    PubMed  Google Scholar 

  16. Darwin Charles (1859) On the Origin of Species. Harvard University Press. Facsimile of Original Edition (1964)

  17. DeLuca M, McElroy WD (1978) Purification and properties of firefly luciferase. In: Colowick SP, Kaplan NO (eds) Methods in enzymology vol 57. DeLuca M (ed) Academic Press, New York, p 3

    Google Scholar 

  18. DeLuca M, McElroy WD (eds) (1981) Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical Applications. Academic Press, New York

    Google Scholar 

  19. Duane W, Hastings JW (1975) Flavin mononucleotide reductase of luminous bacteria. Mol Cell Biochem 6:53–64

    Article  PubMed  Google Scholar 

  20. Dunlap JC, Hastings JW (1981) Biochemistry of dinoflagellate bioluminescence: the purification and characterization of dinoflagellate luciferin fromPyrocystis lunula. Biochemistry 20:983–989

    Article  PubMed  Google Scholar 

  21. Dunlap JC, Shimomura O, Hastings JW (1980) Cross reactivity between the light emitting systems of distantly related organisms involving a novel type of light-emitting compound. Proc Natl Acad Sci USA 77:1394–1397

    Google Scholar 

  22. Dunlap JC, Hastings JW, Shimomura O (1981) Dinoflagellate luciferin is structurally related to chlorophyll. FEBS Letts 135:273–276

    Article  Google Scholar 

  23. Dure LS, Cormier MJ (1961) Requirements for luminescence in extracts of balanoglossid species. J. Biol Chem 236:48–50

    Google Scholar 

  24. Dure LS, Cormier MJ (1964) Studies on the bioluminescence ofBalanoglossus biminiensis extracts. III. A kinetic comparison of luminescent and non-luminescent peroxidation reactions and a proposed mechanism for peroxidase actions. J Biol Chem 239:2351–2359

    PubMed  Google Scholar 

  25. Eberhard A, Burlingame A, Eberhard C, Kenyon G, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer ofPhotobacterium fischeri luciferase. Biochemistry 20:2444–2449

    Article  PubMed  Google Scholar 

  26. Faulkner LR (1978) Chemiluminescence from electron-transfer processes. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology. Vol 57 DeLuca M (ed) Academic Press, New York, p. 494

    Google Scholar 

  27. Fogel M, Hastings JW (1971) A substrate binding protein in theGonyaulax bioluminescence reaction. Arch Biochem Biophys 142:310–321

    Article  PubMed  Google Scholar 

  28. Galt C (1978) Bioluminescence: dual mechanism in a planktonic tunicate produces brilliant coastal display. Science 200:70–72

    PubMed  Google Scholar 

  29. Gast R, Lee J (1978) Isolation of the in vivo emitter in bacterial bioluminescence. Proc Natl Acad Sci USA 75:833–837

    Google Scholar 

  30. Ghisla S, Hastings JW, Favaudon V, Lhoste JM (1978) Structure of the oxygen adduct intermediate in the bacterial luciferase reaction:13C NMR determination. Proc Natl Acad Sci USA 75:5860–5863

    Google Scholar 

  31. Girsch SJ, Herring PJ, McCapra F (1976) Structure and preliminary biochemical characterization of the bioluminescence system ofOmmastrephes pteroptus. J Mar Biol Assoc U K 56:707–722

    Google Scholar 

  32. Haneda Y, Johnson FH, Shimomura O (1966) The origin of luciferin in the luminous ducts ofParapriacanthus ransonneti, Pempheris klunzingeri, andApogon ellioti. In: Johnson FH, Haneda Y (eds) (1966) Bioluminescence in Progress. Princton University Press, pp 533–545

  33. Hansen K, Herring PJ (1977) Dual bioluminescent systems in the angler-fish genusLinophryne (Pisces: Ceratioidea) J Zool Lond 182:103–124

    Google Scholar 

  34. Harvey EN (1926) Oxygen and luminescence. Biol Bull 51:89–97

    Google Scholar 

  35. Harvey EN (1932) The evolution of bioluminescence and its relation to cell respiration. Proc Am Philos Soc 71:135–141

    Google Scholar 

  36. Harvey EN (1952) Bioluminescence, Academic Press, New York

    Google Scholar 

  37. Harvey EN (1957) A History of Luminescence, American Philosophical Society, Philadelphia

    Google Scholar 

  38. Harvey EN, Korr IM (1938) Luminescence in absence of oxygen in the ctenophore,Mnemiopsis leidyi. J Cell Comp Physiol 12:319–323

    Article  Google Scholar 

  39. Hastings JW (1955) The effect of oxygen concentration upon the luminescence of bacterial extracts. Anat Rec 122:458

    Google Scholar 

  40. Hastings JW (1968) Bioluminescence. Ann Rev Biochem 37:597–630

    Article  Google Scholar 

  41. Hastings JW (1976) Bioluminescence. Oceanus 19:17–27

    Google Scholar 

  42. Hastings JW (1975) From chemical bonds to photons. In: Wolstenholme GEW, Fitzsimmons DW (eds) Energy Transformation in Biological Systems. Ciba Foundation Symposium 1 (new series). Associated Scientific Publishers, Amsterdam, pp 125–146

    Google Scholar 

  43. Hastings JW, Balny C (1975) The oxygenated bacterial luciferaseflavin intermediate: reaction products via the light and dark pathways. J. Biol Chem 250:7288–7292

    PubMed  Google Scholar 

  44. Hastings JW, Davenport D (1957) The luminescence of the millipedeLuminodesmus sequviae. Biol Bull 113:120–138

    Google Scholar 

  45. Hastings JW, Gibson QH (1963) Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. J Biol Chem 238:2537–2554

    PubMed  Google Scholar 

  46. Hastings JW, Morin JG (1969a) Comparative biochemistry of calcium-activated photoproteins from the Ctenophore,Mnemiopsis, and the CoelenteratesAequorea, Obelia, Pelagia andRenilla. Biol Bull 137:402

    Google Scholar 

  47. Hastings JW, Morin JG (1969b) Calcium-triggered light emission inRenilla: a unitary biochemical scheme for coelenterate bioluminescence. Biochem Biophys Res Commun 37:493–498

    Article  PubMed  Google Scholar 

  48. Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595

    Article  PubMed  Google Scholar 

  49. Hastings JW, Nealson KH (1980) Exosymbiotic luminous bacteria occurring in luminous organs of higher animals. In: Schwemmler W, Schenk HEA (eds) Endocytobiology. Walter de Gruyter & Co, Berlin, pp 467–471

    Google Scholar 

  50. Hastings JW, Nealson KH (1981) The symbiotic luminous bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The Procaryotes. Springer, Berlin Heidelberg New York, pp 1332–1345

    Google Scholar 

  51. Hastings JW, Presswood RP (1978) In: Colowick SP, Kaplan NO, (eds) Methods in enzymology, vol 53. Fleischer S, Packer L (eds) Academic Press, New York, p 558

    Google Scholar 

  52. Hastings JW, Wilson T (1976) Bioluminescence and chemiluminescence. Photochem Photobiol 23:461–473

    PubMed  Google Scholar 

  53. Hastings JW, McElroy WD, Coulombre J (1953) The effect of oxygen upon the immobilization reaction in firefly luminescence. J Cell Comp Physiol 42:137–150

    Article  Google Scholar 

  54. Hastings JW, Riley WH, Massa J (1965) The purification, properties and chemiluminescent quantum yield of bacterial luciferase. J Biol Chem 240:1473–1481

    PubMed  Google Scholar 

  55. Hastings JW, Balny C, Le Peuch C, Douzou P (1973) Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc Natl Acad Sci USA 70:3468–3472

    Google Scholar 

  56. Hastings JW, Ghisla S, Kurfürst M, Hemmerich P (1981) Fluorescence properties of luciferase peroxyflavins prepared with isoFMN and 2-thioFMN. In: DeLuca M, McElroy WD (eds) Bioluminescence and Chemiluminescence. Academic Press, New York, pp 97–102

    Google Scholar 

  57. Henry JP, Michelson AM (1970) Studies in bioluminescence. IV. Properties of luciferin fromPholas dactylus. Biochem Biophys Acta 205:451–458

    PubMed  Google Scholar 

  58. Henry JP, Monny C, Michelson AM (1975) Characterization and properties ofPholas luciferase as a metalloglycoprotein. Biochemistry 14:3458–3466

    Article  PubMed  Google Scholar 

  59. Herrera A, Hastings JW, Morin JG (1974) Bioluminescence in cell free extracts of the scale worm Harmothoe (Annelida; Polynoidae). Biol Bull

  60. Herring PJ (1974) New observations on the bioluminescence of echinoderms. J Zool Lond 172:401–418

    Google Scholar 

  61. Herring PJ (1977) Luminescence in cephalopods and fish. In: Nixon M, Messenger J (eds) Biology of Cephalopods. Academic Press, London (Symp Zool Soc Lond 38), pp 127–159

    Google Scholar 

  62. Herring PJ (1978) Bioluminescence of invertebrates other than insects. In: Herring PJ (ed) Bioluminescence in Action. Academic Press, London, pp 199–240

    Google Scholar 

  63. Herring PJ (1979) Some features of the bioluminescence of the radiolarianThalassicolla sp. Marine Biol 53:213–216

    Article  Google Scholar 

  64. Herring PJ (1981) Studies on bioluminescent marine amphipods. J Mar Biol Assoc UK 61:161–176

    Google Scholar 

  65. Herring PJ, Morin JG (1978) Bioluminescence in Fishes. In: Herring PJ (ed) Bioluminescence in Action. Academic Press, London, pp 273–329

    Google Scholar 

  66. Herring PJ, Clarke MR, Boletzky SV, Ryan KP (1981) The light organs ofSepiola atlantica andSpirula spirula (Mollusca: Cephalopoda): bacterial and intrinsic systems in the order seploidea. J Mar Biol Assoc UK 61:901–916

    Google Scholar 

  67. Hopkins TA, Seliger HH, White EH, Cass MW (1967) The chemiluminescence of firefly luciferin. A model for the bioluminescence reaction and identification of the product excited state. J Am Chem Soc 89:7148–7150

    Article  PubMed  Google Scholar 

  68. Horn KA, Koo JY, Schmidt SP, Schuster GB (1978–79) Chemistry of the 1,2-dioexetane ring system. Chemiluminescence, fragmentations, and catalyzed rearrangement. Mol Photochem 9:1–37

    Google Scholar 

  69. Inoue S, Kakoi H (1976)Oplophorus luciferin, bioluminescent substance of the decapod shrimpOplophorus spinosus andHeterocarpus laevigatus. Chem Commun XX:1056–1057

    Google Scholar 

  70. Inoue S, Kakoi H, Goto T (1976) Squid bioluminescence III. Isolation and structure ofWatasenia luciferin. Tetrahedron Lett No 34:2971–2974

    Article  Google Scholar 

  71. Inoue S, Okade K, Kakoi H, Goto T (1977) Fish bioluminescence I. Isolation of a luminescent substance from a myctophid fish,Neoscopelus microchir, and identification of it asOplophorus luciferin. Chem Lett XX:257–258

    Google Scholar 

  72. Johnson FH, Shimomura O (1978) Introduction of theCypridina system. In: DeLuca M (ed) Methods of Enzymology, vol LVII. Academic Press, New York, pp 331–364

    Google Scholar 

  73. Johnson FH, Sugiyama N, Shimomura O, Saiga Y, Haneda Y (1961) Crystalline luciferin from a luminescent fish,Parapricanthus beryciformes. Proc Natl Acad Sci 47:468–489

    Google Scholar 

  74. Koka P, Lee J (1979) Separation and structure of the prosthetic group of the blue fluorescence protein from the bioluminescence bacteriumPhotobacterium phosphoreum. Proc Natl Acad Sci 76:3068–3072

    Google Scholar 

  75. Koo J-Y, Schuster GB (1977) Chemically initiated electron exchange luminescence. A new chemiluminescence reaction path for organic peroxides. J Am Chem Soc 99:6107–6109

    Article  Google Scholar 

  76. Koo J-Y, Schuster GB (1978) Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited states. J Am Chem Soc 100:4496–4503

    Article  Google Scholar 

  77. Koo J-Y, Schmidt SP, Schuster GB (1978) Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems. Proc Natl Acad Sci 75:30–33

    PubMed  Google Scholar 

  78. Kopecky KR, Mumford C (1969) Luminescence in the thermal decomposition of 3,3,4-trimethyl-1,2-dioxentane. Can J Chem 47:709–711

    Google Scholar 

  79. Kurfürst M, Ghisla S, Hastings JW (1982a) Bioluminescence emission of bacterial luciferase with FMN analogs, in particular with 1-deaza-FMN. In: Massey V, Williams C (eds) Flavins and Flavoproteins. Elsevier, Amsterdam, pp 353–358

    Google Scholar 

  80. Kurfürst M, Ghisla S, Hastings JW (1982b) Structure and catalytic inactivity of the bacterial luciferase neutral flavin radical. Eur J Biochem 123:355–361

    Article  PubMed  Google Scholar 

  81. Kurfürst M, Ghisla S, Hastings JW (1983) Reaction of luciferase-FMN radical with O2 to form the bioluminescent hydroperoxide. Biochemistry (submitted)

  82. Leisman G, Nealson KH (1982) Characterization of a yellow fluorescent protein fromVibrio (Photobacterium) fischeri. In: Massey V, Williams C (eds) Flavins and Flavoproteins. Elsevier, Amsterdam, pp 383–386

    Google Scholar 

  83. Leisman G, Cohn D, Nealson KH (1980) Bacterial origin of luminescence in marine animals. Science 208:1271–1273

    Google Scholar 

  84. Mackie GO, Bone Q (1978) Luminescence and associated effector activity inPyrosoma. Proc R Soc London Ser B 202:483–495

    Google Scholar 

  85. Makemson JC, Hastings JW (1982) Iron represses bioluminescence and affects catabolite repression inVibrio harveyi. Curr Microbiol 7:175–180

    Article  Google Scholar 

  86. Margulis L (1981) Symbiosis and Cell Evolution. Freeman WH and Co, San Francisco

    Google Scholar 

  87. Martin JP, Fridovich I (1981) Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiontPhotobacter leiognathi. J Biol Chem 256:6080–6089

    PubMed  Google Scholar 

  88. McCapra F (1968) The application of the theory of electrocyclic reactions to bioluminescence. The mechanissm of bioluminescence. Chem Commun 155–156

  89. McCapra F, Hart R (1980) The origins of marine bioluminescence. Nature 286:660–661

    Article  Google Scholar 

  90. McCapra F, Richardson DG (1964) Tetrahedron Lett 3167

  91. McElroy WD, DeLuca M (1978) Chemistry of firefly luminescence. In: Herring P (ed) Bioluminescence in Action. Plenum Press, New York, pp 109–127

    Google Scholar 

  92. McElroy WD, Hastings JW (1956) Initiation and control of firefly luminescence. In: Prosser CL (ed) Physiological Triggers. Ronald Press, pp 80–84.

  93. McElroy WD, Seliger HH (1962) Origin and evolution of bioluminescence. In: Horizons in Biochemistry. Academic Press, New York, pp 91–101

    Google Scholar 

  94. Morin JG (1969) Mechanisms controlling behavior and bioluminescence in the colonial hydroid, Obelia. Ph D Thesis, Harvard University, Cambridge, MA

    Google Scholar 

  95. Morin JG (1981) Bioluminescent patterns in shallow tropical marine fishes. In: Gomez E (ed) Proceedings of the Fourth International Coral Reef Symposium, Vol. 2, pp 569–574, University of Phillipines, Quezon

    Google Scholar 

  96. Morin JG, Cooke IM (1971) Behavioral physiology of the colonial hydroid Obelia: II. Stimulus initiated electrical activity and bioluminescence. J Exp Biol 54:707–721

    Google Scholar 

  97. Morin JG, Hastings JW (1971a) Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol 77:305–312

    Article  PubMed  Google Scholar 

  98. Morin JG, Hastings JW (1971b) Energy transfer in a bioluminescent system. J Cell Physiol 77:313–318

    Article  PubMed  Google Scholar 

  99. Morin JG, Harrington A, Krieger N, Nealson KH, Baldwin TO, Hastings JW (1975) Light for all reasons: versatility in the behavioral repetoire of the flashlight fish. Science 190:74–76

    Google Scholar 

  100. Morise H, Shimomura O, Johnson FH, Winant J (1974) Intermolecular energy transfer in the bioluminescent system ofAequorea. Biochemistry 13:2656–2662

    Article  PubMed  Google Scholar 

  101. Nealson KH, Hastings JW (1977) Low oxygen is optimal for luciferase synthesis in some bacteria: ecological implications. Arch Microbiol 112:9–16

    Article  PubMed  Google Scholar 

  102. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    PubMed  Google Scholar 

  103. Nealson KH, Hastings JW (1980) Luminescent bacterial endosymbionts in bioluminescent tunicates. In: Schwemmler W, Schenk HEA (eds) Endocytobiology. Walter de Gruyter & Co, Berlin, pp 461–466

    Google Scholar 

  104. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    PubMed  Google Scholar 

  105. Nealson KH, Cohn D, Leisman G, Tebo B (1981) Co-evolution of luminous bacteria and their eukaryotic hosts. NY Acad Sci 361:76–91

    Google Scholar 

  106. Nicolas MT (1979) Présence de photosomes dans les fractions lumineuses du système élytral des Polynoinae (Annelides polychetes). CR Acad Sci Paris Ser D 289:177–180

    Google Scholar 

  107. Nicolas MT (1980) Solubilisation du système lumineux des Polynoiniens, comparaison de différents tests d'activité. Biol Cell 39:1, 5a

    Google Scholar 

  108. Nicolas MT, Moreau M, Guerrier P (1978) Indirect nervous control of luminescence in the polynoid wormHarmothoe lunulata. J Exp Zool 206:427–433

    Article  Google Scholar 

  109. Nicolas MT, Bassot J-M, Shimomura O (1982) Polynoidin: a membrane photoprotein isolated from the bioluminescent system of scaleworms. Photochem Photobiol 35:201–207

    Google Scholar 

  110. Ohtsuka H, Rudie NG, Wampler JE (1976) Structure identification and synthesis of luciferin from the bioluminescent earthworm,Diplocardia longa. Biochemistry 15:1001–1004

    Article  PubMed  Google Scholar 

  111. Poinar GG Jr, Thomas GM, Hess R (1977) Characteristics of the specific bacterium associated withHeterorhabditis bacteriophora. Nematologica 23:97–102

    Google Scholar 

  112. Poinar GO Jr, Thomas G, Haygood M, Nealson KH (1980) Growth and luminescence of the symbiotic bacteria associated with the terrestrial nematode.Heterorhabditis bacteriorphora. Soid Biology and Biochemistry 12:5–10

    Article  Google Scholar 

  113. Poulsen EM (1962) “Ostracoda-Myodocopa, Part 1”. Carlsberg Foundation, Copenhagen, pp 1–414

    Google Scholar 

  114. Robinson BH, Young RE (1981) Bioluminescence in pelagic octopods. Pacific Science 35:39–44

    Google Scholar 

  115. Ruby EG, Nealson KH (1977) A luminous bacterium that emits yellow light. Science 196:432–434

    PubMed  Google Scholar 

  116. Salvini-Plawen L v, Mayr E (1977) On the evolution of photoreceptors and eyes. In: Hecht MK, Steere WC, Wallace B (eds) Evolutionary Biology, vol 10. Plenum Publishing Corp, pp 207–263

  117. Schmidt SP, Schuster GB (1978) Dioxetanone chemiluminescence by the chemically initiated electron exchange pathway. Efficient generation of excited states. J Am Chem Soc 100:1966–1968

    Article  Google Scholar 

  118. Seliger HH (1975) The origin of bioluminescence. Photochem Photobiol 21:355–361

    PubMed  Google Scholar 

  119. Seliger HH, Morton RA (1968) A physical approach to bioluminescence. In: Giese AC (ed) Photophysiology, vol IV, Academic Press, New York, pp 253–314

    Google Scholar 

  120. Shimomura O (1979) Structure of the chromophore ofAequorea green fluorescent protein. FEBS Lett 104:220–222

    Article  Google Scholar 

  121. Shimomura O (1980) Chlorophyll-derived bile pigment in bioluminescent euphausiids. FEBS Lett 116:203–206

    Article  Google Scholar 

  122. Shimomura O, Johnson FH (1966) Partial purification and properties of theChaetopterus luminescence system. In: Johnson FH, Haneda Y (eds) Bioluminescence in Progress. Princeton University Press, Princeton, NJ, pp 495–521

    Google Scholar 

  123. Shimomura O, Johnson FH (1968a) The structure ofLatia luciferin. Biochemistry 7:1734–1738

    Article  PubMed  Google Scholar 

  124. Shimomura O (1981) A new type of ATP-activated bioluminescent system in the millipedeLuminodesmus sequoiae. FEBS Lett 128:242–244

    Article  Google Scholar 

  125. Shimomura O, Johnson FH (1968b) Purification and properties of the luciferase and of a protein cofactor in the bioluminescence system ofLatia neritoides. Biochemistry 7:2574–2580

    Article  PubMed  Google Scholar 

  126. Shimomura O, Johnson FH (1968c)Chaetopterus photoprotein: crystallization and cofactor requirements for bioluminescence. Science 159:1239–1240

    PubMed  Google Scholar 

  127. Shimomura O, Johnson FH (1975) Regeneration of the photoprotein aequorin. Nature 256:236–238

    Article  PubMed  Google Scholar 

  128. Shimomura O, Johnson FH (1978) Peroxidized coelenterazine, the active group in bioluminescence of the photoprotein aequorin. Proc Natl Acad Sci 75:2611–2615

    PubMed  Google Scholar 

  129. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan,Aequorea. J Cell Comp Physiol 59:223

    Article  PubMed  Google Scholar 

  130. Shimomura O, Johnson FH, Saiga Y (1963) Partial purification and properties of theOdontosyllis luminescence system. J Cell Comp Physiol 61:275–292

    Article  Google Scholar 

  131. Shimomura O, Beer JR, Johnson FH (1964) The cyanide activation ofOdontosyllis luminescence. J Cell Comp Physiol 64:15–22

    Article  Google Scholar 

  132. Shimomura O, Johnson FH, Haneda Y (1966) Observation on the biochemistry of luminescence in the New Zealand glowworm,Arachnocampa luminosa. In: Johnson FH, Haneda Y (eds) Bioluminescence in Progress. Princeton University Press, Princeton, NJ, pp 487–494

    Google Scholar 

  133. Shimomura O, Johnson FH, Kohama Y (1972) Reactions in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria. Proc Natl Acad Sci 69:2086–2089

    PubMed  Google Scholar 

  134. Shimomura O, Inoue S, Johnson FH, Haneda Y (1980) Widespread occurrence of coelenterazine in marine bioluminescence. Comp Biochem Physiol 65B:435–437

    Google Scholar 

  135. Stone H (1968) The enzyme catalyzed oxidation ofCypridina luciferin. Biochem. Biophys Res Commun 31:386–391

    Article  PubMed  Google Scholar 

  136. Tsuji FI (1978)Cypridina luciferin and luciferase. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol LVII (DeLuca MA, ed). Academic Press, New York, pp 364–372

    Google Scholar 

  137. Tsuji FI, Haneda Y, Lynch RV, Sugiyama N (1971) Luminescence cross-reactions ofPorichthys luciferin and theories on the origin of luciferin in some shallow-water fishes. Comp Biochem Physiol 40A:163–179

    Article  Google Scholar 

  138. Tsuji FI, Barnes AT, Case JF (1972) Bioluminescence in the marine teleost,Porichthys notatus, and its induction in a non-luminous form byCypridina (Ostracod) luciferin. Nature 237:515–516

    Article  PubMed  Google Scholar 

  139. Ulitzur S, Hastings JW (1978) Myristic acid stimulation of bacterial bioluminescence in “aldehyde” mutants. Proc Natl Acad Sci 75:266–269

    PubMed  Google Scholar 

  140. Ulitzur S, Hastings JW (1979) Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proc Natl Acad Sci 76:265–267

    PubMed  Google Scholar 

  141. Ulitzur S, Reinhertz A, Hastings JW (1981) Factors affecting the cellular expression of bacterial luciferase. Arch Microbiol 129:67–71

    PubMed  Google Scholar 

  142. Wampler JE (1981) Earthworm bioluminescence. In: DeLuca M, McElroy WD (eds) Bioluminescence and Chemiluminescence. Academic Press, New York, p 249

    Google Scholar 

  143. Wampler JE (1982) The bioluminescent system ofMicroscolex phosphoreus and its similarities to those of other bioluminescent earthworms (oligochaeta). Comp Biochem Physiol 71A:599–604

    Article  Google Scholar 

  144. Wampler JE, Jamieson BGM (1980) Earthworm bioluminescence: comparative physiology and biochemistry. Comp Biochem Physiol 66B:43–50

    Google Scholar 

  145. Wampler JE, Hori K, Lee J, Cormier MJ (1971) Structured bioluminescence. Two emitters during both thein vitro and thein vivo bioluminescence ofRenilla. Biochemistry 10:2903–2909

    Article  PubMed  Google Scholar 

  146. Ward WW, Cormier MJ (1978) Energy transfer via protein-protein interaction inRenilla bioluminescence. Photochem Photobiol 27:389–396

    Google Scholar 

  147. Ward WW, Seliger HH (1974a) Extraction and purification of calcium-activated photoproteins. Biochemistry 13:1491–1499

    Article  PubMed  Google Scholar 

  148. Ward WW, Seliger HH (1974b) Properties of mnemiopsin and berovin, calcium-activated photoproteins. Biochemistry 13:1500–1510

    Article  PubMed  Google Scholar 

  149. Warner JA, Case JF (1980) The zoogeography and dietary induction of bioluminescence in the midshipman fish,Porichthys notatus. Biol Bull 159:231–246

    Google Scholar 

  150. Wassink EC (1978) Luminescence in fungi. In: Herring PJ (ed) Bioluminescence in Action. Academic Press, London, pp 171–197

    Google Scholar 

  151. Watanabe H, Hastings JW (1982) Specificities and properties of three reduced pyridine nucleotide-flavin mononucleotide reductases coupling to bacterial luciferase. Mol Cell Biochem 44:181–187

    Article  PubMed  Google Scholar 

  152. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Ann Rev Biochem 46:573–639

    Article  PubMed  Google Scholar 

  153. Wilson T (1976) Chemiluminescence in the liquid phase: Thermal cleavage of dioxetanes. Int Rev Sci Phys Chem Ser Two 9:265–322

    Google Scholar 

  154. Young RE, Roper CFE, Mangold K, Leisman G, Hochberg FG Jr (1979) Luminescence from non-bioluminescent tissues in oceanic cephalopods. Mar Biol 53:69–77

    Article  Google Scholar 

  155. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theoret Biol 8:357–366

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

With major contributions to Table 2 and critical review by James G. Morin, Department of Biological Science, University of California, Los Angeles, CA 90024, USA

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hastings, J.W. Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J Mol Evol 19, 309–321 (1983). https://doi.org/10.1007/BF02101634

Download citation

Key words

  • Bioluminescence
  • Luciferase
  • Luciferin
  • Evolution of luminescence
  • Oxygenases
  • Peroxides and light emission