Communications in Mathematical Physics

, Volume 175, Issue 1, pp 1–42

The Euler-Poincaré equations and double bracket dissipation

  • Anthony Bloch
  • P. S. Krishnaprasad
  • Jerrold E. Marsden
  • Tudor S. Ratiu
Article

Abstract

This paper studies the perturbation of a Lie-Poisson (or, equivalently an Euler-Poincaré) system by a special dissipation term that has Brockett's double bracket form. We show that a formally unstable equilibrium of the unperturbed system becomes a spectrally and hence nonlinearly unstable equilibrium after the perturbation is added. We also investigate the geometry of this dissipation mechanism and its relation to Rayleigh dissipation functions. This work complements our earlier work (Bloch, Krishnaprasad, Marsden and Ratiu [1991, 1994]) in which we studied the corresponding problem for systems with symmetry with the dissipation added to the internal variables; here it is added directly to the group or Lie algebra variables. The mechanisms discussed here include a number of interesting examples of physical interest such as the Landau-Lifschitz equations for ferromagnetism, certain models for dissipative rigid body dynamics and geophysical fluids, and certain relative equilibria in plasma physics and stellar dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel, H.D.I., Holm, D.D., Marsden, J.E., Ratiu, T.S., [1986]: Nonlinear stability analysis of stratified fluid equilibria. Phil. Trans. R. Soc. Lond. A318, 349–409; also Phys. Rev. Lett.52, 2352–2355 [1984]Google Scholar
  2. Abraham, R., Marsden, J.E. [1978]: Foundations of Mechanics (2nd ed.) Reading, MA: Addison-WesleyGoogle Scholar
  3. Alekseevski, D.V., Michor, P.W. [1993]: Characteristic classes and Cartan connections. PreprintGoogle Scholar
  4. Arnold, V. [1988]: Dynamical Systems III. Encyclopedia of Mathematics, Berlin, Heidelberg, New York: SpringerGoogle Scholar
  5. Bloch, A.M., Brockett, R.W., Ratiu, T.S. [1992]: Completely integrable gradient flows. Commun. Math. Phys.147, 57–74Google Scholar
  6. Bloch, A.M., Crouch, P.E. [1994]: Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems. Proc. CDC33, 2584–2590, IEEEGoogle Scholar
  7. Bloch, A.M., Flaschka, H., Ratiu, T.S. [1990]: A convexity theorem for isospectral sets of Jacobi matrices in a compact Lie algebra. Duke Math. J.61, 41–66Google Scholar
  8. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S. [1991]: Asymptotic stability, instability, and stabilization of relative equilibria. Proc. of ACC., Boston IEEE, 1120–1125Google Scholar
  9. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S. [1994]: Dissipation Induced Instabilities. Ann. Inst. H. Poincaré, Analyse Nonlineare11, 37–90Google Scholar
  10. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Sánchez de Alvarez, G. [1992]: Stabilization of rigid body dynamics by internal and external torques. Automatica28, 745–756Google Scholar
  11. Brockett, R.W. [1973]: Lie theory and control systems defined on spheres. SIAM. J. Appl. Math.23, 213–225Google Scholar
  12. Brockett, R.W. [1988]: Dynamical systems that sort lists and solve linear programming problems. Proc. IEEE27, 799–803 and Linear Algebra and its Appl.146, (1991), 79–91Google Scholar
  13. Brockett, R.W. [1993]: Differential geometry and the design of gradient algorithms. Proc. Symp. Pure Math., AMS54, Part I, 69–92Google Scholar
  14. Brockett, R.W. [1994]: The double bracket equation as a solution of a variational problem. Fields Institute Comm.3, 69–76, AMSGoogle Scholar
  15. Chandrasekhar, K. [1977]: Ellipsoidal Figures of Equilibrium. DoverGoogle Scholar
  16. Chern, S.J., Marsden, J.E. [1990]: A note on symmetry and stability for fluid flows. Geo. Astro. Fluid. Dyn.51, 1–4Google Scholar
  17. Chetaev, N.G. [1961]: The stability of Motion. Trans. by. M. Nadler, New York: Pergamon PressGoogle Scholar
  18. Crouch, P.E. [1981]: Geometric structures in systems theory. IEEE Proc, Part D, No 5128 Google Scholar
  19. Ebin, D.G., Marsden, J.E. [1970]: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math.92, 102–163Google Scholar
  20. Giles, R., Patterson, G., Bagneres, A., Kotiuga, R., Humphrey, F., Mansuripur, M. [1991]: Micromagnetic simulations on the connection machine. Very Large Scale Computation in the 21st Century, J.P. Mesirov, ed., SIAM, 33–40Google Scholar
  21. Grmela, M. [1993a]: Weakly nonlocal hydrodynamics. Phys. Rev. E47, 351–365Google Scholar
  22. Grmela, M. [1984]: Bracket formulation of dissipative fluid mechanics equations. Phys. Lett. A102, 355–358Google Scholar
  23. Grmela, M. [1993b]: Thermodynamics of driven systems. Phys. Rev. E48, 919–930Google Scholar
  24. Guckenheimer, J., Mahalov, A. [1992]: Instability induced by symmetry reduction. Phys. Rev. Lett.68, 2257–2260Google Scholar
  25. Hahn, W. [1967]: Stability of Motion. Springer, Berlin, New York: HeidelbergGoogle Scholar
  26. Haller, G. [1992]: Gyroscopic stability and its loss in systems with two essential coordinates. Int. J. Nonlinear Mech.27, 113–127Google Scholar
  27. Helman, J.S., Braun, H.B., Broz, J.S., Baltensperger, W. [1991]: General solution to the Landau-Lifschitz-Gilbert equations linearized around a Bloch wall. Phys. Rev. B43, 5908–5914Google Scholar
  28. Holm, D.D., Marsden, J.E., Ratiu, T.S., Weinstein, A. [1985]: Nonlinear stability of fluid and plasma equilibria. Phys. Rep.123, 1–116Google Scholar
  29. Kammer, D.C., Gray, G.L. [1993]: A nonlinear control design for energy sink simulation in the Euler-Poinsot problem. J. Astron. Sci.41, 53–72Google Scholar
  30. Kandrup, H.E. [1991]: The secular instability of axisymmetric collisionless star cluster. Astrophy. J.380, 511–514Google Scholar
  31. Kandrup, H.E., Morrison, P. [1992]: Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters. Preprint.Google Scholar
  32. Kaufman, A.N. [1984]: Dissipative Hamiltonian systems: A unifying principle. Physics Letters A100, 419–422Google Scholar
  33. Kaufman, A.N. [1985]: Lorentz-covariant dissipative Lagrangian systems. Physics Letters A109, 87–89Google Scholar
  34. Kolář, I., Michor, P.W., Slovák, J. [1993]: Natural Operations in Differential Geometry. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  35. Knobloch, E., Mahalov, Marsden, J.E. [1994], Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics. Physica D73, 49–81Google Scholar
  36. Krein, M.G. [1950]: A generalization of some investigations of linear differential equations with periodic coefficients. Doklady Akad. Nauk SSSR N.S.73, 445–448Google Scholar
  37. Krishnaprasad, P.S. [1985]: Lie-Poisson structures, dual-spin spacecraft and asymptotic stability. Nonl. An. Th. Meth. and Appl.9, 1011–1035Google Scholar
  38. LaSalle, J.P., Lefschetz, S. [1963]: Stability by Lyapunov's direct method. New York: Academic PressGoogle Scholar
  39. Lewis, D.K. [1992]: Lagrangian block diagonalization. Dyn. Diff. Eqn's.4, 1–42Google Scholar
  40. Lewis, D., Ratiu, T.S., Simo, J.C., Marsden, J.E. [1992]: The heavy top, a geometric treatment Nonlinearity5, 1–48Google Scholar
  41. Lewis, D.K., Simo, J.C. [1990]: Nonlinear stability of rotating pseudo-rigid bodies. Proc. Roy. Soc. Lon. A427, 281–319Google Scholar
  42. MacKay, R. [1991]: Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett.A155, 266–268Google Scholar
  43. Marsden, J.E. [1992]: Lectures on Mechanics. London Mathematical Society Lecture note series,174, Cambridge: Cambridge University PressGoogle Scholar
  44. Marsden, J.E., Ratiu, T.S. [1992]: Symmetry and Mechanics. Texts in Applied Mathematics,17, Berlin, Heilderberg, New York: SpringerGoogle Scholar
  45. Marsden, J.E., Ratiu, T.S., Raugel, G. [1991]: Symplectic connections and the linearization of Hamiltonian systems. Proc. Roy. Soc. Ed. A117, 329–380Google Scholar
  46. Marsden, J.E., Ratiu, T.S., Weinstein, A. [1984]: Semi-direct products and reduction in mechanics. Trans. Am. Math. Soc.281, 147–177Google Scholar
  47. Marsden, J.E., Scheurle, J. [1993a]: Lagrangian reduction and the double spherical pendulum. ZAMP44, 17–43Google Scholar
  48. Marsden, J.E., Scheurle, J. [1993b]: The reduced Euler-Lagrange equations. Fields Institute Comm.1, 139–164Google Scholar
  49. Marsden, J.E., Weinstein, A. [1982]: The Hamiltonian structure of the Maxwell-Vlasov equations. Physica D4, 394–406Google Scholar
  50. Morrison, P.J. [1980]: The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A80, 383–386Google Scholar
  51. Morrison, P.J. [1982]: Poisson Brackets for fluids and plasmas. In: Mathematical Methods in Hydrodynamics and Integrability in Related Dynamical Systems. AIP Conf. Proc.88, M. Tabor and Y.M. Treve (eds.), La Jolla, CAGoogle Scholar
  52. Morrison, P.J. [1986]: A paradigm for joined Hamiltonian and dissipative systems. Physica D18, 410–419Google Scholar
  53. Morrison, P.J., Kotschenreuther, M. [1989]: The free energy principle, negative energy modes and stability. Proc 4th Int. Workshop on Nonlinear and Turbulent Processes in Physics, Singapore: World Scientific Press.Google Scholar
  54. Newcomb, W.A. [1962]: Lagrangian and Hamiltonian methods in Magnetohydrodynamics. Nuc. Fusion Suppl., part 2, 451–463Google Scholar
  55. O'Dell, T.H. [1981]: Ferromagnetodynamics. New York: John WileyGoogle Scholar
  56. O'Reilly, O, Malhotra, N.K., Namamchehivaya, N.S. [1993]: Destabilization of the equilibria of reversible dynamical systems (preprint)Google Scholar
  57. Pego, R.L., Weinstein, M.I. [1992]: Eigenvalues and instabilities of solitary waves. Phil. Trans. Roy. Soc. Lond.340, 47–94Google Scholar
  58. Poincaré, H. [1885]: Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation. Acta. Math.7, 259Google Scholar
  59. Poincaré, H. [1892]: Les formes d'équilibre d'une masse fluide en rotation. Revue Générale des Sciences3, 809–815Google Scholar
  60. Poincaré, H. [1901]: Sur la stabilité de l'équilibre des figures piriformes affectées par une masse fluide en rotation. Philosophical Transactions A198, 333–373Google Scholar
  61. Poincaré, H. [1910]: Sur la precession des corps deformables. Bull Astron27, 321–356Google Scholar
  62. Posbergh, T.A. [1994]: The damped vibration absorber as a feedback control problem. PreprintGoogle Scholar
  63. Posbergh, T.A., Zhao, R. [1993]: Stabilization of the uniform rotation of a rigid body by the energy-momentum method. Fields Inst. Comm.1, 263–280Google Scholar
  64. Riemann, B. [1860]: Untersuchungen über die Bewegung eines flüssigen gleichartigen Ellipsoides. Abh. d. Königl. Gesell. der Wiss. zu Göttingen9, 3–36Google Scholar
  65. Routh, E.J. [1877]: Stability of a given state of motion. Reprinted in Stability of Motion, ed. A.T. Fuller, New York: Halsted Press, 1975Google Scholar
  66. Seliger, R.L., Whitham, G.B. [1968]: Variational principles in continuum mechanics. Proc. Roy. Soc. Lond.305, 1–25Google Scholar
  67. Shepherd, T.G. [1992]: Extremal properties and Hamiltonian structure of the Euler equations. Topological Aspects of the Dynamics of Fluids and Plasmas, Moffatt, H.K., et al., eds., Dordrecht. Kluwer, 275–292Google Scholar
  68. Simo, J.C., Lewis, D.K., Marsden, J.E. [1991]: Stability of relative equilibria I: The reduced energy momentum method. Arch. Rat. Mech. Anal.115, 15–59Google Scholar
  69. Simo, J.C., Posbergh, T.A., Marsden, J.E. [1990]: Stability of coupled rigid body and geometrically exact rods: Block diagonalization and the energy-momentum method. Physics Reports193, 280–360Google Scholar
  70. Simo, J.C., Posbergh, T.A., Marsden, J.E. [1991]: Stability of relative equilibria II: Three dimensional elasticity. Arch. Rat. Mech. Anal.115, 61–100Google Scholar
  71. Sri Namachchivaya, N., Ariaratnam, S.T. [1985]: On the dynamic stability of gyroscopic systems. SM Archives10, 313–355Google Scholar
  72. Sternberg, S. [1963]: Lectures on Differential Geometry. New York: Prentice-Hall (Reprinted by Chelsea, 1983).Google Scholar
  73. Taussky, O. [1961]: A Generalization of a Theorem of Lyapunov. SIAM J. Appl. Math9, 640–643Google Scholar
  74. Thomson, L., Tait, P.G. [1879]: Treatise on Natural Philosophy. Cambridge: Cambridge Univ. Press.Google Scholar
  75. Touma, J., Wisdom, J. [1992]: Lie-Poisson integrators for rigid body dynamics in the solar system. PreprintGoogle Scholar
  76. Turski, L.A., Kaufman, A.N. [1987]: Canonical-dissipative formulation of relativistic plasma kinetic theory with self-consistent Maxwell field. Physics Lett. A120, 331–333Google Scholar
  77. Vallis, G.K., Carnevale, G.F., Young, W.R. [1989]: Extremal energy properties and construction of stable solutions of the Euler equations. J. Fluid Mech.207, 133–152Google Scholar
  78. van Gils, S.A., Krupa, M., Langford, W.F. [1990]: Hopf bifurcation with non-semisimple 1∶1 resonance. Nonlinearity3, 825–830Google Scholar
  79. Vershik, A.M., Faddeev, L.D. [1981]: Lagrangian mechanics in invariant form. Sel. Math. Sov.1, 339–350Google Scholar
  80. Wang, L.S., Krishnaprasad, P.S. [1992]: Gyroscopic control and stabilization. J. Nonlinear Sci.2, 367–415Google Scholar
  81. Ziegler, H. [1956]: On the concept of elastic stability. Adv. Appl. Mech.4, 351–403Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Anthony Bloch
    • 1
  • P. S. Krishnaprasad
    • 2
  • Jerrold E. Marsden
    • 3
  • Tudor S. Ratiu
    • 4
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of Electrical Engineering and Institute for Systems ResearchUniversity of MarylandCollege ParkUSA
  3. 3.Control and Dynamical Systems 104-44California Institute of TechnologyPasadenaUSA
  4. 4.Department of MathematicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations