Communications in Mathematical Physics

, Volume 167, Issue 3, pp 471–507 | Cite as

Classical limit of the quantized hyperbolic toral automorphisms

  • Mirko Degli Esposti
  • Sandro Graffi
  • Stefano Isola
Article

Abstract

The canonical quantization of any hyperbolic symplectomorphismA of the 2-torus yields a periodic unitary operator on aN-dimenional Hilbert space,N=1/h. We prove that this quantum system becomes ergodic and mixing at the classical limit (N→∞,N prime) which can be interchanged with the time-average limit. The recovery of the stochastic behaviour out of a periodic one is based on the same mechanism under which the uniform distribution of the classical periodic orbits reproduces the Lebesgue measure: the Wigner functions of the eigenstates, supported on the classical periodic orbits, are indeed proved to become uniformly speread in phase space.

Keywords

Neural Network Statistical Physic Hilbert Space Phase Space Complex System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AA] Arnold, V.I., Avez, A.: Ergodic Problems in Classical Mechanics. New York: Benjamin, 1968Google Scholar
  2. [Ap] Apostol, T.: Introduction to Analytic Number theory. Berlin, Heidelber, New York: Springer, 1976Google Scholar
  3. [BH] Hannay, J. H., Berry, M.V.: Quantization of linear maps on a torus-Fresnel diffraction by a periodic grating. Physica D1, 267–291 (1980)Google Scholar
  4. [BV] Bartuccelli, F., Vivaldi, F.: Ideal Orbits of Toral Automorphisms. Physica D39, 194 (1989)Google Scholar
  5. [BNS] Benatti, R., Narnhofer, H., Sewell, G. L.: A non-commutative version of the Arnold cat map. Lett. Math. Phys.21, 157–172 (1991)CrossRefGoogle Scholar
  6. [CdV] Colin de Verdiere, Y.: Ergodicité et functions propres du Laplacien. Commun. Math. Phys.102, 497–502 (1985)CrossRefGoogle Scholar
  7. [Ch] Chandrasekharan, K.: Introduction to Analytic Number Theory. Berlin, Heidelberg, New York: Springer, 1968Google Scholar
  8. [Da] Davenport, H.: On certain exponential sums. Reine, J. Angewandte Mathematik78, 158–176 (1932)Google Scholar
  9. [DE] Degli Esposti, M.: Quantization of the orientation preserving automorphisms of the torus. Ann. Inst. Pincaré, H.58, 323–341 (1993)Google Scholar
  10. [De1] Deligne, P.: La conjecture de Weil I. Pub. Math. I.H.E.S.48, 273–308 (1974)Google Scholar
  11. [De2] Deligne, P.: Cohomologie Etale. Lecture Notes in Mathematics569, (1974)Google Scholar
  12. [E1] Eckhardt, B.: Exact eigenfunctions for a quantized map. J. Phys. A19, 1823–1833 (1986)Google Scholar
  13. [E2] Eckhardt, B.: Quantum mechanics of classically non-integrable systems. Phys. Reports163, 205–297 (1988)CrossRefGoogle Scholar
  14. [F] Folland, G.: Harmonic Analysis in Phase Space, Princeton: Princeton University Press, 1988Google Scholar
  15. [FRM] Ford, J., Mantica, G., Ristov, G.H.: The Arnol'd cat: Failure of the correspondence principle. Physica D25, 105–135 (1991)Google Scholar
  16. [H] Hasse, H.: Number Theory, Berlin, Heidelberg, New York: Springer, 1980Google Scholar
  17. [HMR] Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys.09, 313–326 (1987)CrossRefGoogle Scholar
  18. [I] Isola, S.: ξ-function and distribution of periodic orbits of toral automorphisms. Europhys. Lett.11, 517–522 (1990)Google Scholar
  19. [Ka1] Katz, N.: Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University Press, 1988Google Scholar
  20. [Ka2] Katz, N. Sommes Exponentielles. Asterisque79, 1980Google Scholar
  21. [Ke1] Keating, J.: Ph. D. thesis, University of Bristol (1989)Google Scholar
  22. [Ke2] Keating, J.: Asymptotic properties of the periodic orbits of the cat map. Nonlinearity4, 277–307 (1991)CrossRefGoogle Scholar
  23. [Ke3] Keating, J.: The cat maps: Quantum mechanics and classical motion. Nonlinearity4, 309–341 (199)CrossRefGoogle Scholar
  24. [Kn] Knabe, S.: On the quantization of the Arnold cat map. J. Phys. A23, 2013–2025 (1990)Google Scholar
  25. [LV] Leboeuf, J., Voros, A.: Chaos revealing multiplicative represenation of quantum eigenstates. J. Phys. A23, 1765–1773 (1990)Google Scholar
  26. [M] Mañe, R.: Ergodic Theory and Differentiable Dynamics. Berlin, Heidelberg, New York: Springer, 1987Google Scholar
  27. [N] Narnhofer, H.: Quantized Arnold cats can be entropicK-systems. J. Math. Phys.33, 1502–1510 (1992)CrossRefGoogle Scholar
  28. [PV] Percival, I., Vivaldi, F.: Arithmetical properties of strongly chaotic motions. Physica D25, 105–130 (1987)Google Scholar
  29. [PP] Parry, W., Pollicott, M.: Zea functions and the periodic orbit structure of hyperbolic dynamics, Astérisque187–188 (1990)Google Scholar
  30. [RM] Ram Murthy, M.: Artin's conjecture for primitive roots. Mathematical Intelligencer10, 59–70 (1988)Google Scholar
  31. [S] Schnirelman, A.: Ergodic properties of the eigenfunctions. Usp. Math. Nauk29, 181–182 (1974)Google Scholar
  32. [Sa] Sarnak, P.: Arithmetic Quantum Chaos. Tel Aviv Lectures 1993 (to apper)Google Scholar
  33. [Sc] Schmidt, W.: Equations over finite fields. An elementary approach. Vol.536, Lecture Notes in Mathematis, 1976Google Scholar
  34. [VN] Von Neumann, J.: Beweis des Ergoidensatzes und desH-Theorems in der Neuen Mechanik. Zschr. f. Physik57, 30–70 (1929)CrossRefGoogle Scholar
  35. [Z] Zelditch, S.: Uniform distribution of eigenfunction on compact hyperbolic surfaces. Duke Math. J.55, 919–941 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Mirko Degli Esposti
    • 1
  • Sandro Graffi
    • 1
  • Stefano Isola
    • 1
  1. 1.Departmento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations