Skip to main content
Log in

Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a certain family of Schrödinger operators whose eigenfunctions ϕ(χ, λ) satisfy a differential equation in the spectral parameter λ of the formB(λ,∂ λ)ϕ=Θ(x)ϕ. We show that the flows of a hierarchy of master symmetries for KdV are tangent to the manifolds that compose the strata of this class ofbispectral potentials. This extends and complements a result of Duistermaat and Grünbaum concerning a similar property for the Adler and Moser potentials and the flows of the KdV hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., Moser, J.: On a class of polynomials connected with the KdV equations. Commun. Math. Phys.61, 1–30 (1978)

    Google Scholar 

  2. Airault, H., Mc Kean, H., Moser, J.: Rational and elliptic solutions of the KdV equation and a related many body problem. Commun. Pure Appl. Math.30, 95–148 (1977)

    Google Scholar 

  3. Bishop, R., Goldberg, S.: Tensor analysis on manifolds. New York: Dover 1980

    Google Scholar 

  4. Chen, H., Lee, Y., Lin, J.: Preprint PL83-002, University of Maryland 1982

  5. Crum, M.: Associated Sturm-Liouville systems. Quart. J. Math., Ser. 2,6, 121–127 (1955)

    Google Scholar 

  6. Darboux, G.: Leçons sur la Théorie Générale de Surface et les Applications Géométriques du Calcul Infinitésimal, Deuxième Partie. Paris, France: Gauthiers-Villars 1889

    Google Scholar 

  7. Deift, P., Trubowitz, E.: Inverse scattering on the line. CPAM32, 121–251 (1977)

    Google Scholar 

  8. Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys.103, 177–240 (1986)

    Google Scholar 

  9. Fröhlicher, A., Nijenhuis, A.: Theory of vector-valued differential forms. Part I. Indag. Math., t.18, 338–350 (1956).

    Google Scholar 

  10. Fuchssteiner, B.: Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations. Prog. Theor. Phys.70 (6), 1508–1522 (1983)

    Google Scholar 

  11. Fuchssteiner, B.: Mastersymmetries for completely integrable systems in statistical mechanics. In: Garrido, L. (ed.), Proc. Sitges Conference. Lecture Notes in Physics, vol.216, pp. 305–315. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  12. Gel'fand, I.M., Dikii, L.A.: Fractional powers of operators and Hamiltonian systems. Funkt. Anal. Pril.10 (4), 13–29 (1976)

    Google Scholar 

  13. Gel'fand, I.M., Dikii, L.A.: Resolvents and Hamiltonian systems. Funkt. Anal. Pril.11(2), 11–27 (1977)

    Google Scholar 

  14. Grünbaum, F.A.: Differential equations in the spectral parameter: the higher order case. In: Proceedings of the conference on Tomographic Inverse Problems, Montpellier, pp. 307–322 (1986)

  15. Grünbaum, F.A.: Some nonlinear evolution equations and related topics arising in medical imaging. Physica D18, 308–311 (1986)

    Google Scholar 

  16. Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962

    Google Scholar 

  17. Ince, E.L.: Ordinary differential equations. New York: Dover 1956

    Google Scholar 

  18. Lang, S.: Differential manifolds. Reading, Mass.: Addison-Wesley 1972

    Google Scholar 

  19. Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math.31, 467–490 (1968)

    Google Scholar 

  20. Levi, D.: Hierarchies of nonlinear integrable evolution equations with variable coefficients. In: Leon, Jérôme J.P. (ed.), Workshop on Nonlinear Evolution Equations and Dynamical Systems, Montpellier, p. 75–85. Singapore: World Scientific 1986

    Google Scholar 

  21. Levi, D., Ranisco, O., Sym, A.: Dressing method vs. classical Darboux transformations. Il Nuovo Cim.83B(1), 34–42 (1984)

    Google Scholar 

  22. Magri, F.: Equivalence transformations for nonlinear evolution equations. J. Math. Phys.18 (7), 1405–1411 (1977)

    Google Scholar 

  23. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys.19, 1156–1162 (1978)

    Google Scholar 

  24. Magri, F., Kosmann-Schwarzbach, Y.: Poisson-Nijenhuis structures. To appear

  25. Matveev, V.B., Salle, M.A., Rybin, A.V.: Darboux transformations and coherent interaction of the light pulse with two level media. Inverse Problems4, 173–183 (1988)

    Google Scholar 

  26. Oevel, G., Fuchssteiner, B., Blaszak, M.: Action-Angle representation of multisolitons by potentials of mastersymmetries. Prog. Theor. Phys.83(3), 395–413 (1990)

    Google Scholar 

  27. Oevel, W., Falck, M.: Master symmetries for finite dimensional integrable systems. Prog. Theor. Phys.75(6), 1328–1341 (1986)

    Google Scholar 

  28. Oevel, W., Fuchssteiner, B.: Explicit formulas for symmetries and conservation laws of the Kadomtsev-Petviashvili equation. Phys. Lett.88A(7), 323–327 (1982)

    Google Scholar 

  29. Olver, P.: Applications of Lie groups to differential equations. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  30. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHES61, 5–65 (1985)

    Google Scholar 

  31. Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Dover 1987

    Google Scholar 

  32. Wright, P.E.: Darboux transformations, algebraic varieties of Grassmann manifolds, commuting flows and bispectrality. PhD thesis, University of California, Berkeley 1987

    Google Scholar 

  33. Zubelli, J.P.: Differential equations in the spectral parameter for matrix differential operators of AKNS type. PhD thesis, University of California, Berkeley, 1989

    Google Scholar 

  34. Zubelli, J.P.: Differential equations in the spectral parameter for matrix differential operators. Physica D43, 269–287 (1990)

    Google Scholar 

  35. Zubelli, J.P.: Rational solutions of nonlinear evolution equations, vertex operators and bispectrality. J. Differ. Eqs. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubelli, J.P., Magri, F. Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV. Commun.Math. Phys. 141, 329–351 (1991). https://doi.org/10.1007/BF02101509

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101509

Keywords

Navigation