Advertisement

Communications in Mathematical Physics

, Volume 163, Issue 3, pp 561–604 | Cite as

Maximal hypersurfaces in stationary asymptotically flat spacetimes

  • Piotr T. Chrusciel
  • Robert M. Wald
Article

Abstract

Existence of maximal hypersurfaces and of foliations by maximal hypersurfaces is proven in two classes of asymptotically flat spacetimes which possess a one parameter group of isometries whose orbits are timelike “near infinity.”. The first class consists of strongly causal asymptotically flat spacetimes which contain no “black hole or white hole” (but may contain ”ergoregions” where the Killing orbits fail to be timelike). The second class of spacetimes possess a black hole and a white hole, with the black and white hole horizons intersecting in a compact 2-surfaceS.

Keywords

Neural Network Black Hole Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashtekar, A., Xanthopoulos, B.C.: J. Math. Phys.19, 2216 (1978)CrossRefGoogle Scholar
  2. 2.
    Bartnik, R.: Commun. Math. Phys.94, 155 (1984)CrossRefGoogle Scholar
  3. 3.
    Bartnik, R.: Acta Math.161, 145 (1988)Google Scholar
  4. 4.
    Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys.31, 161 (1973)CrossRefGoogle Scholar
  5. 5.
    Bartnik, R., Chruściel, P.T., O'Murchadha, N.: Commun. Math. Phys.130, 95 (1990)CrossRefGoogle Scholar
  6. 6.
    Beig, R., Simon, W.: Proc. Roy. Soc. Lond.A376, 333 (1981)Google Scholar
  7. 7.
    Butterworth, E.M., Ipser, J.R.: Astroph.204, 200 (1976)CrossRefGoogle Scholar
  8. 8.
    Carter, B.: Black hole equilibrium states. In: Black Holes, C. de Witt, B. de Witt (eds.) New York, London, Paris: Gordon & Breach, 1973Google Scholar
  9. 9.
    Christodoulou, D., O'Murchadha, N.: Commun. Math. Phys.80, 27 (1981)CrossRefGoogle Scholar
  10. 10.
    Chruściel, P.T.: J. Math. Phys.30, 2094 (1989)CrossRefGoogle Scholar
  11. 11.
    Chruściel, P.T.: gr-gc/9304029. Class. Quantum. Grav.10, 2091 (1993)CrossRefGoogle Scholar
  12. 12.
    Damour, T., Schmidt, B.: J. Math. Phys.31, 10 (1990)CrossRefGoogle Scholar
  13. 13.
    Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  14. 14.
    Geroch, R.: J. Math. Phys.11, 437 (1970)CrossRefGoogle Scholar
  15. 15.
    Geroch, R., Hartle, J.: J. Math. Phys.23, 680 (1982)CrossRefGoogle Scholar
  16. 16.
    Geroch, R., Horowitz, G.: Phys. Rev. Lett.40, 203 (1978)CrossRefGoogle Scholar
  17. 17.
    Hartle, J.B., Hawking, S.W.: Commun. Math. Phys.26, 87 (1972)CrossRefGoogle Scholar
  18. 18.
    Hartmann, P.: Ordinary differential equations. Cambridge Baltimore, MD: John Hopkins University Press 1973Google Scholar
  19. 19.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacet-time, Cambridge: Cambridge University Press 1973Google Scholar
  20. 20.
    Lau, Y.K., Newman, R.P.A.C.: Class, Quantum Grav.10, 551 (1993)Google Scholar
  21. 21.
    Rácz, I., Wald, R.M.: Class. Quantum. Grav.9, 2643 (1992)CrossRefGoogle Scholar
  22. 22.
    Simon, W., Beig, R.: J. Math. Phys.24, 1163 (1983)CrossRefGoogle Scholar
  23. 23.
    Sudarsky, D., Wald, R.M.: Phys. Rev.D46, 1453 (1992)CrossRefGoogle Scholar
  24. 24.
    Wald, R.M.: General relativity. Chicago IL: University of Chicago Press, 1984Google Scholar
  25. 25.
    Walker, M.: J. Math. Phys.11, 2280 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Piotr T. Chrusciel
    • 1
  • Robert M. Wald
    • 2
  1. 1.Max Planck Institut für AstrophysikGarching bei MünchenGermany
  2. 2.Enrico Fermi Institute and Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations