Communications in Mathematical Physics

, Volume 181, Issue 3, pp 529–568 | Cite as

Drinfeld-Sokolov gravity

  • Roberto Zucchini
Article
  • 47 Downloads

Abstract

A lagrangian euclidean model of Drinfeld-Sokolov (DS) reduction leading to generalW-algebras on a Riemann surface of any genus is presented. The background geometry is given by the DS principal bundleK associated to a complex Lie groupG and anSL(2,ℂ) subgroupS. The basic fields are a hermitian fiber metricH ofK and a (0, 1) Koszul gauge fieldA* ofK valued in a certain negative graded subalgebrar ofg related tos. The action governing theH andA* dynamics is the effective action of a DS field theory in the geometric background specified byH andA*. Quantization ofH andA* implements on one hand the DS reduction and on the other defines a novel model of 2d gravity, DS gravity. The gauge fixing of the DS gauge symmetry yields an integration on a moduli space of DS gauge equivalence classes ofA* configurations, the DS moduli space. The model has a residual gauge symmetry associated to the DS gauge transformations leaving a given fieldA* invariant. This is the DS counterpart of conformal symmetry. Conformal invariance and certain non-perturbative features of the model are discussed in detail.

Keywords

Modulus Space Riemann Surface Gauge Transformation Gauge Symmetry Gauge fieldA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouwknegt P. and Schoutens, K.: Phys. Rep.223, 183 (1993) and references thereinCrossRefGoogle Scholar
  2. 2.
    Bergshoeff, E., Bilal, A. and Stelle, K.S.: Int. J. Mod. Phys.A6, 4959 (1991) and references thereinCrossRefGoogle Scholar
  3. 3.
    Hull, C.M.: Proc. of Strings and Symmetries 1991, Stony Brook, May 1991, ed. N. Berkovits et al., Singapore: World Scientific, 1992, and references thereinGoogle Scholar
  4. 4.
    Schoutens, K., Sevrin, A. and van Nieuwenhuizen, P.: Phys. Lett.B243, 245 (1990), Phys. Lett.B251, 355 (1990), Nucl. Phys.B349, 791 (1991), Nucl. Phys.B364, 584 (1991), Nucl. Phys.B371, 315 (1992), Proc. of Strings and Symmetries 1991, Stony Brook, May 1991, ed. N. Berkovits et al. Singapore: World Scientific, 1992, and references thereinCrossRefGoogle Scholar
  5. 5.
    West, P.: Lecture at Salamfest (1993), hep-th/9309095 and references thereinGoogle Scholar
  6. 6.
    Forgács, P., Wipf, A., Balog, J., Fehér, L. and O'Raifeartaigh, L.: Phys. Lett.B227, 214 (1989)CrossRefGoogle Scholar
  7. 7.
    Balog, J., Fehér, L., Forgács, P., O'Raifeartaigh L. and Wipf, A.: Phys. Lett.B244, 435 (1990) and Ann. Phys.203, 76 (1990)CrossRefGoogle Scholar
  8. 8.
    O'Raifertaigh, L. and Wipf, A.: Phys. Lett.B251, 361 (1990)CrossRefGoogle Scholar
  9. 9.
    O'Raifertaigh, L., Ruelle, P., Tsutsui, I. and Wipf, A.: Commun. Math. Phys.143, 333 (1992)CrossRefGoogle Scholar
  10. 10.
    Fehér, L., O'Raifertaigh, L., Ruelle, P., Tsutsui, I. and Wipf, A.: Ann. Phys.213, 1 (1992) and Phys. Rep.222, no. 1, 1 (1992)CrossRefGoogle Scholar
  11. 11.
    Bais, F.A., Tjin, T. and van Driel, P.: Nucl. Phys.B357, 632 (1991)CrossRefGoogle Scholar
  12. 12.
    Tjin, T. and van Driel, P.: Preprint ITFA-91-04Google Scholar
  13. 13.
    Bershadsky, M. and Ooguri, H.: Commun. Math. Phys.126, 49 (1989)Google Scholar
  14. 14.
    Zucchini, R.: Phys. Lett.B323, 332 (1994) and J. Geom. Phys.16, 237 (1995)Google Scholar
  15. 15.
    Drinfeld, V.G. and Sokolov, V.V.: J. Sov. Math.30, 1975 (1985)Google Scholar
  16. 16.
    Polyakov, A.M.: Phys. Lett.B103, 207 (1981), Phys. Lett.B103, 211 (1981)CrossRefGoogle Scholar
  17. 17.
    Friedan, D.: In: Recent Developments in Field Theory and Statistical Mechanics. Amsterdam: North-Holland, 1984Google Scholar
  18. 18.
    Alvarez, O.: Nucl. Phys.B216, 125 (1983)CrossRefGoogle Scholar
  19. 19.
    Moore, G. and Nelson, P.: Nucl. Phys.B266, 58 (1986)Google Scholar
  20. 20.
    Kodaira, K.: Complex Manifolds and Deformations of Complex Structures. Grundlehren Math. Wiss. 283, Berlin-Heidelberg-New York: Springer-Verlag, 1985Google Scholar
  21. 21.
    Donaldson, S.K.: Proc. London Math. Soc.50, 1 (1985) and Duke Math. J.54, 231 (1987)Google Scholar
  22. 22.
    Polyakov, A.M.: Int. J. Mod. Phys.A5, 833 (1990)CrossRefGoogle Scholar
  23. 23.
    De Boer, J. and Goeree, J.: Phys. Lett.B274, 289 (1992), Nucl. Phys.B401, 369 (1993)CrossRefGoogle Scholar
  24. 24.
    Hitchin, N.J.: Topology31, no. 3, 449 (1992)CrossRefGoogle Scholar
  25. 25.
    Govindarajan, S. and Jayaraman, T.: Phys. Lett.B345, 211 (1995)CrossRefGoogle Scholar
  26. 26.
    Gunning, R.: Lectures on Riemann surfaces. Princeton, NJ: Princeton University Press, 1966 and Lectures on Vector Bundles on Riemann surfaces, Princeton, NJ: Princeton University Press, 1967Google Scholar
  27. 27.
    Wells, R.O.: Differential Analysis on Complex Manifolds. Graduate Texts in Mathematics, Berlin-Heidelberg-New York: Springer-Verlag, 1980Google Scholar
  28. 28.
    Kobayashi, S.: Differential Geometry of Complex Vector bundles. Iwanami Shoten Publishers and Princeton University Press, 1987.Google Scholar
  29. 29.
    Zucchini, R.: Commun. Math. Phys.178, 201 (1996)Google Scholar
  30. 30.
    Knecht, M., Lazzarini, S. and Stora, R.: Phys. Lett.B273, 63 (1991)CrossRefGoogle Scholar
  31. 31.
    Zucchini, R.: Class. Quantum Grav.11, 1697 (1994)CrossRefGoogle Scholar
  32. 32.
    Kawai, H. and Nakayama, R.: Phys. Lett.B306, 224 (1993)CrossRefGoogle Scholar
  33. 33.
    Ichinose, S., Tsuda, N. and Yukawa, T.: Nucl. Phys.B445, 295 (1995)CrossRefGoogle Scholar
  34. 34.
    Uhlenbeck, K.K. and Yau, S.T.: Comm. Pure and Appl. Math.39-S, 257 (1986)Google Scholar
  35. 35.
    Simpson, C.T.: J. Am. Math. Soc.1, no. 4, 867 (1988)Google Scholar
  36. 36.
    Aldrovandi, E. and Falqui, G.: hep-th/9312093 to appear in J. Geom. Phys. and hep-th/9411184Google Scholar
  37. 37.
    Aldrovandi, E. and Bonora, L.: J. Geom. Phys.14, 65 (1994)CrossRefGoogle Scholar
  38. 38.
    Bilal, A., Fock, V.V. and Kogan, I.I.: Nucl. Phys.B359, 635 (1991)CrossRefGoogle Scholar
  39. 39.
    Zucchini, R.: Class. Quantum Grav.10, 253 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Roberto Zucchini
    • 1
  1. 1.Dipartimento di FisicaUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations