Skip to main content
Log in

Polymorphisms in tandemly repeated sequences ofSaccharomyces cerevisiae mitodhondrial DNA

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A spontaneously arising mitochondrial DNA (mtDNA) variant ofSaccharomyces cerevisiae has been formed by two exta copies of a 14-bp sequence (TTAATTAAATTATC) being added to a tandem repeat of this unit. Similar polymorphisms in tandemly repeated sequences have been found in a comparison between mtDNAs from our strain and others. In 5850 bp of intergenic mtDNA squence, polymorphisms in tandemly repeated sequences of three or more base pairs occur approximately every 400–500 bp whereas differences in 1–2 bp occur approximately every 60 bp. Some polymorphisms are associated wit optional G+C-rich sequences (GC clusters). Two such optional GC clusters and one A+T repeat polymorphism have been discovered in the tRNA synthesis locus. In addition, the variable presence of large open reading frames are documented and mechanisms for generating intergenic sequence diversity inS. cerevisiae mtDNA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonitz SG, Homison G, Thalenfeld BE, Tzagloff A, Nobrega FG (1982) Assembly of the mitochondrial membrane system. Processing of the apocytochrome b precursor RNAs inSaccharomyces cerevisiae D273-10B. J Biol Chem 257:6268–6274

    PubMed  Google Scholar 

  • Bruns TD, Fogel R, White TJ, Palmer JD (1989) Accelerated evolution of a false-trffle from a muschoom ancestor. Nature 339:140–142

    PubMed  Google Scholar 

  • Buroker NE, Brown JR, Gilbet TA, O'Hara PJ, Beckenbach AT, Thomas WK, Smith MJ (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124:157–163

    PubMed  Google Scholar 

  • Butow RA, Perlman PS Grossman LI (1985) The unusualvar1 gene of yeast mitochondrial DNA. Science 228:1496–1501

    PubMed  Google Scholar 

  • Clark-Walker GD (1989) In vivo rearrangemnet of mitochondrial DNA inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 86:8847–8851

    PubMed  Google Scholar 

  • Colin Y, Balbacci G, Bernardi G (1985) A new putative gene in the mitochnodrial genome ofSaccharomyces cerevisiae. Gene 36:1–13

    PubMed  Google Scholar 

  • Densmore LD, Wright JW, Brown WM (1985) Length varaition and heteroplasmy are frequent in mitochondrial DNA from parthnogenetic and bisexual lizares (genusCnemidophorus). Genetics 110:689–707

    PubMed  Google Scholar 

  • DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of HawaiianDrosophila. J Mol Evol 26:157–164

    PubMed  Google Scholar 

  • deZamaroczy M, Bernardi G (1985) Sequence organization of the mitochondrial genome of yeast — a review. Gene 37:1–17

    PubMed  Google Scholar 

  • deZamaroczy M, Bernardi G (1986a) The GC clusters of the mitochondrial genome of yeast and their evolutionary origin. Gene 41:1–22

    PubMed  Google Scholar 

  • deZamaroczy M, Bernardi G (1986b) The primary structure of the mitochondrial genome of Saccharomyces cerevisiae — a review. Gene 47:155–177

    PubMed  Google Scholar 

  • deZamaroczy M, Bernardi G (1987) The AT spacers and thevar 1 genes from the mitochondrial genomes ofSaccharomyces cerevisiae andTorulopsis glabrata: evolutionary origin and mechanism of formation. Gene 54:1–22

    PubMed  Google Scholar 

  • Dujon B (1980) Sequence of the introm and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the ω andrib-1 loci. Cell 20:185–197

    PubMed  Google Scholar 

  • Evans RJ, Clark-Walker GD (1985) Elevated levels of petite formation in strains ofSaccharomyces cerevisiae restored to respiratory competence. II. Organization of mitochondrial genomes in strains having high and moderate frequencies of petite mutant formation. Genetics 111:403–432

    PubMed  Google Scholar 

  • Evans RJ, Oakley KM, Clark-Walker GD (1985) Elevated levels of petite formation in strains ofSaccharomyces cerevisiae restored to respiratory competence. I. Association of both high and moderate frequencies of petite formation with the presence of aberrant mitochondrial DNA. Genetics 111:389–412

    PubMed  Google Scholar 

  • Gaillard C, Strauss F, Bernardi G (1980) Excision sequences in the mitochondrial genome of yeast. Nature 283:218–220

    PubMed  Google Scholar 

  • Goursot R, Mangin M, Bernardi G (1982) Surrogate origins of replication in the mitochondrial genomes ofori 0 petite mutants of yeast. EMBO J 1:705–711

    PubMed  Google Scholar 

  • Hauswirth WW, Van de Walle MJ, Laipis PJ, Olivo PD (1984) Heterogeneous mitochondrial DNA D-loop seuences in bovine tissue. Cell 37:1001–1007

    PubMed  Google Scholar 

  • Hudspeth MES, Vincent RD, Perlman PS, Shumard DS, Treisman LO, Grossman LI (1984) Expandablevar 1 gene of yeast mitochondrial DNA: in frame insertions can explain the strainspecfic protein size polymorphisms. Proc Natl Acad Sci USA 81:3148–3152

    PubMed  Google Scholar 

  • Huttenhofer A, Sakai H, Weiss-Brummer B (1988) Site-specific AT-cluster isertions in the mitochondrial 15S rRNA gene of the yeastS. cerevisiae. Nucleic Acids Res 16:8665–8674

    PubMed  Google Scholar 

  • Kunkel TA, Soni A (1988) Mutagenesis by transien misalignment. J Biol Chem 29:14784–14789

    Google Scholar 

  • La Roche J, Snyder M, Cook DI, Fuller K, Zouros E (1990) Molecular characterization of a repeat element causing largescale variation in the mitochondrial DNA of the seascallopPlacopecten megallanicus. Mol Biol Evol 7(1):45–64

    PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4(3):203–221

    PubMed  Google Scholar 

  • Macino G, Tzagoloff A (1980) Assembly of the mitochondrial membrane system: sequence analysis of a yeast mitochondrial ATPase gene containingoli-2 andoli-4 loci. Cell 20:507–517

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning —a laboratory manual. Cold Spring Harbor Laboratories. Cold Springe Harbor, NY

    Google Scholar 

  • Maxwell RJ, Devenish RJ, Nagley P (1986) The nucleotide sequence of the mitochondrial genome of an abundant petite mutant ofSaccharomyces cerevisiae carrying theori l replication origin. Biochem Int 13:101–107

    PubMed  Google Scholar 

  • McClelland M, Hanish J, Nelson M, Patel Y (1988) KGB; a single buffer for all restriction endonucleases. Nucleic Acids Res 16:364

    PubMed  Google Scholar 

  • Miller DL, Underbrink-Lyon K, Najarian DR, Krupp J, Martin NC (1983) Transcription of yeast mitochondrial tRNA genes and processing of tRNA gene transcripts. In: Schweyen RJ, Wolf K, Kaudewtz F (eds) Mitochondria 1983. Nucleo-mitochondrial interactions. De Gruyter, Berlin, pp 151–164

    Google Scholar 

  • Moritz C, Brown WM (1987) Tandem duplications in animal mitochondrial DNAs: variation in indidence and gene content among lizards. Proc Natl Acad Sci USA 84:7183–7187

    PubMed  Google Scholar 

  • Novitski CE, Macreadie IG, Maxwell RJ, Lukins HB, Linnane AW, Nagley P (1984) Biogenesis of mitochondria: genetic and molecular analysis of theoli2 region of mitochondrial DNA inSaccharomyces cerevisiae. Curr Genet 8:135–146

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  • Seraphin B, Simon M, Faye G (1987) The mitochondrial reading frame RF3 is a functional gene inSaccharomyces uvarum. J Biol Chem 262:10146–10153

    PubMed  Google Scholar 

  • Skelly PJ, Clark-Walker GD (1990) Conversion at large intergenic regions of mitochondrial DNA inSaccharomyces cerevisiae. Mol Cell Biol 10:1530–1537

    PubMed  Google Scholar 

  • Sor F, Fukuhara H (1982) Nature of an inserted sequence in the mitochondrial gene coding for the 15S ribosomal RNA of yeast. Nucleic Acids Res 10:1625–1633

    PubMed  Google Scholar 

  • Strausberg RL, Butow RA (1981) Gene conversion at thevar1 locus of yeast mitochondrial DNA. Proc Natl Acad Sci USA 78:494–498

    PubMed  Google Scholar 

  • Thalenfeld BE, Tzagoloff A (1980) Assembly of the mitochondrial membrane system. Sequence of theOxi 2 gene of yeast mitochondrial DNA. J Biol Chem 255:6173–6180

    PubMed  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    PubMed  Google Scholar 

  • Thomas WK, Beckenbach AT (1989) Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. J Mol Evol 29:233–245

    PubMed  Google Scholar 

  • Weiller G, Schueller CME, Schweyen RJ (1989) Putative target sites for mobile G+C rich clusters in yeast mitochondrial DNA: single elements and tandem arrays. Mol Gen Genet 218:272–283

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skelly, P.J., Clark-Walker, G.D. Polymorphisms in tandemly repeated sequences ofSaccharomyces cerevisiae mitodhondrial DNA. J Mol Evol 32, 396–404 (1991). https://doi.org/10.1007/BF02101279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101279

Key words

Navigation