Skip to main content
Log in

The set of maps\(F_{a,b} :x \mapsto x + a + \tfrac{b}{{2\pi }}\) sin(2πx) with any given rotation interval is contractiblewith any given rotation interval is contractible

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider the two-parameter family of real analytic maps\(F_{a,b} :x \mapsto x + a + \tfrac{b}{{2\pi }}\) sin(2πx) which are lifts of degree one endomorphisms of the circle. The purpose of this paper is to provide a proof that for any closed intervalI, the set of mapsF a,b whose rotation interval isI, form a contractible set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alsedà, L., Mañosas, F.: Kneading theory and rotation intervals for a class of circle maps of degree one. Nonlinearity3, 413–452 (1990)

    Article  Google Scholar 

  2. Arnold, V.I.: Small denominators, I. Mappings of the circumference onto itself. AMS Trans.46, 213–284 (1965)

    Google Scholar 

  3. Block, L., Franke, J.: Existence of periodic points for maps ofS 1,. Invent. Math.22, 69–73 (1973)

    Article  Google Scholar 

  4. Boyland, P.L.: Bifurcations of circle maps: Arnol'd tongues bistability and rotation intervals. Commun. Math. Phys.106, 353–381 (1986)

    Article  Google Scholar 

  5. Chenciner, A., Gambaudo, J.M., Tresser, C.: Une remarque sur la structure des endomorphismes de degré un du cercle. C.R. Acad. Sc. Paris série I,299, 771–773 (1984)

    Google Scholar 

  6. Dawson, S., Galeeva, R., Milnor, J., Tresser, C.: A monotonicity conjecture for real cubic maps. IMS-SUNY Stonybrook preprint series, #1993/11

  7. Denjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore. J. de Math. Pures et Appl.11, 333–375 (1932)

    Google Scholar 

  8. Epstein, A.: Towers of finite type complex analytic maps. Ph.D. Thesis, CUNY, (1993)

  9. Fatou, P.: Sur les equations fonctionnelles. Bull. Soc. Math. France,47, 161–271 (1919)

    MathSciNet  Google Scholar 

  10. Fatou, P.: Sur les equations fonctionnelles. Bull. Soc. Math. France,48, 33–94, 208–314 (1920)

    MathSciNet  Google Scholar 

  11. Galeeva, R., Martens, M., Tresser, C.: Inducing, slopes, and conjugacies. IMS-SUNY Stonybrook preprint series, #1994/4

  12. Gardiner, F.: Teichmüller Theory and Quadratic Differentials. New York: Wiley-Interscience, 1987

    Google Scholar 

  13. Goldberg, L.R., Keen, L.: A finiteness theorem for a dynamical class of entire functions. J. Ergodic Th. and Dyn. Sys.6, 183–192 (1986)

    Google Scholar 

  14. Herman, M.R.: Sur la conjugaison differentiable des diffémorphismes à des rotations. Pub. Math. I.H.E.S.49, 5–234 (1980)

    Google Scholar 

  15. Keen, L.: Dynamics of holomorphic self-maps ofC *. In: D. Drasin et al., editor, Holomorphic Functions and Moduli. M.S.R.I., Springer, 1988

  16. Keen, L.: Julia sets. In: Keen, L., Devaney, R. editors, Chaos and Fractals: The Mathematics Behind the Computer Graphics, chapter Julia Sets, pages 57–74. Providence, KI, AMS, 1989

    Google Scholar 

  17. Kotus, J.: Iterated holomorphic maps on the punctured plane. Preprint #358, Polish Acad. of Math., 1986

  18. Lehto, O.: Univalent Functions and Teichmüller Spaces. Berlin-Heidelberg-New York: Springer, 1987

    Google Scholar 

  19. Lyubich, M.: Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems. I. The case of negative Schwarzian derivative. Erg. Th. & Dyn. Syst.9, 737–750 (1989)

    Google Scholar 

  20. Mackay, R.S., Tresser, C.: Transition to topological chaos for circle maps. Physica19D, 206–237 (1986) &29D, 427 (1988)

    Google Scholar 

  21. Martens, M., de Melo, W., van Strien, S.: Julia-Fatou-Sullivan theory for real one-dimensional dynamics. Acta Math.168, 273–318 (1992)

    Google Scholar 

  22. McMullen, C., Sullivan, D.P.: Quasiconformal homeomorphisms and dynamics: III. Preprint

  23. McMullen, C.T.: Families of rational maps and iterative root-finding algorithms. Ann. Math.125, 467–493 (1987)

    Google Scholar 

  24. de Melo, W., van Strien, S.: One-Dimensional Dynamics. Berlin, Heidelberg, New York: Springer, 1993

    Google Scholar 

  25. Milnor, J.: Dynamics in one complex variable: Introductory lectures. IMS-SUNY Stonybrook preprint series, #1990/5

  26. Milnor, J., Thurston, W.: On iterated maps of the interval. Springer Lecture Notes,1342, 465–563 (1988)

    Google Scholar 

  27. Misiurewicz, M.: Twist sets for maps of the circle. Erg. Th. & Dyn. Syst.4, 391–404 (1984)

    Google Scholar 

  28. Newhouse, S., Palis, J., Takens, F.: Stable families of diffeomorphisms. Publ. Math. I.H.E.S.57, 5–71 (1983)

    Google Scholar 

  29. Poincaré, H.: Sur les courbes définies par des équations différentielles. J. Math. Pures et Appl., 4eme série,1, 167–244 (1885 Also in: O Euvres Complétes, t 1 Paris: Gauthier-Villars, 1951

    Google Scholar 

  30. Siegel, C.L.: Bermerkg zu einem Satz von Jakob Nielsen. In: Gesammelte Abhandlungen, Vol.3, Berlin-Heidelberg-New York: Springer-Verlag, 1966, pp. 92–96

    Google Scholar 

  31. Sullivan, D.P.: Quasiconformal homeomorphisms and dynamics: I. Ann. Math.122, 401–418 (1985)

    Google Scholar 

  32. Uherka, D.J., Tresser, C., Galeeva, R., Campbell, D.K.: Solvable models for the quasi-periodic transition to chaos. Phys. Let. A170, 189–194 (1992), erratum, A177, 461 (1993), and to appear

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ya. G. Sinai

Supported in part by NSF GRANT DMS-9205433, Inst. Math. Sciences, SUNY-StonyBrook and I.B.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, A., Keen, L. & Tresser, C. The set of maps\(F_{a,b} :x \mapsto x + a + \tfrac{b}{{2\pi }}\) sin(2πx) with any given rotation interval is contractiblewith any given rotation interval is contractible. Commun.Math. Phys. 173, 313–333 (1995). https://doi.org/10.1007/BF02101236

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101236

Keywords

Navigation