Skip to main content
Log in

Compositional patterns in the nuclear genome of cold-blooded vertebrates

  • Focus
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

DNA preparations obtained from 122 species of fishes, 5 species of amphibians, and 13 species of reptiles were investigated in their compositional properties by analytical equilibrium centrifugation in CsCl density gradients. These species represented 21 orders of Osteichthyes, 3 orders of Chondrichthyes, 2 orders of amphibians, and 3 orders of reptiles. Modal buoyant densities of fish DNAs ranged from 1.696 to 1.707 g/cm3, the vast majority of values falling, however, between 1.699 and 1.704 g/cm3, which is the range covered by the DNAs of amphibians and reptiles. In all cases, DNA bands in CsCl were only weakly asymmetrical and only very rarely were accompanied by separate satellite bands (mostly on the GC-rich side). Intermolecular compositional heterogeneities were low in the vast majority of cases, and, like CsCl band asymmetries, at least partially due to cryptic or poorly resolved satellites. The present findings indicate, therefore, that DNAs from cold-blooded vertebrates are characterized by a number of common properties, namely a very wide spectrum of modal buoyant densities, low intermolecular compositional heterogeneities, low CsCl band asymmetries, and, in most cases, small amounts of satellite DNAs. In the case of fish DNAs a negative correlation was found between the GC level and the haploid size (c value) of the genome. If polyploidization is neglected, this phenomenon appears to be mainly due to the fact that increases and decreases in GC are associated with contraction and expansion phenomena, respectively, of intergenic noncoding sequences, which are GC poor relative to coding sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allendorf FW, Thorgaard GH (1984) In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum, New York, pp 1–45

    Google Scholar 

  • Alvarez MC, Cano J, Thode G (1980) DNA content and chromosome complement ofChromis chromis (Pomacentridae, Perciformes). Caryologia 33:267–274

    Google Scholar 

  • Bernardi G (1971) Chromatography of nucleic acids on hydroxyapatite columns. In: Grossman L, Moldave K (eds) Methods in enzymology, vol 21. Academic Press, New York, pp 95–139

    Google Scholar 

  • Bernardi G (1989) The isochore organization of the human genome. Annu Rev Genet 23:637–661

    Article  PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1985) Codon usage and genome composition. J Mol Evol 22:363–365

    PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11

    PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1990) Compositional transitions in the nuclear genomes of cold-blooded vertebrates. J Mol Evol 31:282–293

    PubMed  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of the vertebrates. Science 228:953–958

    PubMed  Google Scholar 

  • Bernardi G, Pizon V, Cuny G, Haschemeyer AEV, Bernardi G (1986) AND et taxonomie des poissons. Oceanis 12:377–380

    Google Scholar 

  • Bernardi G, Mouchiroud D, Gautier C, Bernardi G (1988) Compositional patterns in vertebrate genomes: conservation and change in evolution. J Mol Evol 28:7–18

    PubMed  Google Scholar 

  • Birstein VJ (1982) Structural characteristics of genome organization in amphibians: differential staining of chromosomes and DNA structure. J Mol Evol 18:73–91

    Article  PubMed  Google Scholar 

  • Birstein VJ, Vassiliev VP (1987) Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pisces). Genetica 72:3–12

    Article  Google Scholar 

  • Cano J, Thode G, Alvarez MC (1982) Karyoevolutive considerations in 29 Mediterranean teleost fishes. Vie Milieu 32: 21–24

    Google Scholar 

  • Corneo G, Ginelli E, Soave C, Bernardi G (1968) Isolation and characterization of mouse and guinea pig satellite DNAs. Biochemistry 7:4373–4379

    Article  PubMed  Google Scholar 

  • Cortadas J, Macaya G, Bernardi G (1977) An analysis of the bovine genome by density gradient centrifugation: fractionation in Cs2SO4/3,6 bis(acetato-mercurimethyl)dioxane density gradient. Eur J Biochem 76:13–19

    Article  PubMed  Google Scholar 

  • Cortadas J, Olofsson B, Meunier-Rotival M, Macaya G, Bernardi G (1979) The DNA components of the chicken genome. Eur J Biochem 99:179–186

    Article  PubMed  Google Scholar 

  • Cuny G, Soriano P, Macaya G, Bernardi G (1981) The major components of the mouse and human genomes: preparation, basic properties, and compositional heterogeneity. Eur J Biochem 111:227–233

    Article  Google Scholar 

  • De Lucca FL, Imaizumi M, Haddad A (1974) Characterization of ribonucleic acids from the venom glands ofCrotalus durissus terrificus (Ophidia, Reptilia) after manual extraction of the venom. Biochem J 139:151–156

    PubMed  Google Scholar 

  • Eigner J, Doty P (1965) The native, denatured and renatured states of deoxyribonucleic acid. J Mol Biol 12:549–580

    PubMed  Google Scholar 

  • Felix K, Jilke I, Zahn RK (1956) Die Deoxyribonucleinsaure Einiger Fischspermien. Hoppe Seyler's Z Physiol Chem 303:140–152

    PubMed  Google Scholar 

  • Filipski J, Thiery JP, Bernardi G (1973) An analysis of the bovine genome by Cs2SO4/Ag+ density gradient centrifugation. J Mol Biol 80:177–197

    Article  PubMed  Google Scholar 

  • Gold JL, Karel WJ (1988) DNA base composition and nucleotide distribution among fifteen species of teleostan fishes. Comp Biochem Physiol 90B:715–719

    Article  Google Scholar 

  • Gosline WA (1970) A reinterpretation of the fish order Gobiesociformes. Proc Calif Acad Sci, Ser 4 37:363–382

    Google Scholar 

  • Hinegardner R (1976) The cellular DNA content of sharks, rays and some other fishes. Comp Biochem Physiol B55:367–370

    Article  PubMed  Google Scholar 

  • Hinegardner R, Rosen DE (1972) Cellular DNA content in the evolution of teleostan fishes. Am Nat 106:621–644

    Article  Google Scholar 

  • Hudson AP, Cuny G, Cortadas J, Haschemeyer AEV, Bernardi G (1980) An analysis of fish genomes by density gradient centrifugation. Eur J Biochem 112:203–210

    Article  PubMed  Google Scholar 

  • Hummel S, Meyerhof W, Korge E, Knöchel W (1984) Characterization of highly and moderately repetitive 500 bp EcoRI fragments fromXenopus laevis DNA. Nucleic Acids Res 12:4921–4938

    PubMed  Google Scholar 

  • Ifft JB, Voet DM, Vinograd J (1961) The determination of density distributions and density gradients in binary solutions at equilibrium in the ultracentrifuge. J Phys Chem 65:1138–1145

    Google Scholar 

  • Karel WJ, Gold JL (1987) A thermal denaturation study of genome DNAs from North-American minnows (Cyprinidae, Teoleostei). Genetica 74:181–187

    Article  PubMed  Google Scholar 

  • Kay ERM, Simmons NS, Dounce AL (1952) An improved preparation of sodium desoxyribonucleate. J Am Chem Soc 74:1724–1726

    Article  Google Scholar 

  • Kornfield I (1984) In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum, New York, pp 591–616

    Google Scholar 

  • Macaya G, Thiery JP, Bernardi G (1976) An approach to the organization of eukaryotic genomes at a macromolecular level. J Mol Biol 108:237–254

    PubMed  Google Scholar 

  • Majumdar KC, McAndrew BJ (1986) Relative DNA content of somatic nuclei and chromosomal studies in three genera,Tilapia, Sarotherodon, andOreochromis of the tribe Tilapiini (Pisces, Cichlidae). Genetica 68:175–188

    Google Scholar 

  • Matsuura K (1979) Phylogeny of the superfamily Balistoidea (Pisces, Tetraodontiformes). Mem Fac Fish Hokkaido University 26:49–169

    Google Scholar 

  • Medrano L, Bernardi G, Couturier J, Dutrillaux B, Bernardi G (1988) Chromosome banding and genome compartmentalization in fishes. Chromosoma 96:178–183

    Article  Google Scholar 

  • Morescalchi A, Olmo E (1982) Single-copy DNA and vertebrate phylogeny. Cytogenet Cell Genet 34:93–101

    PubMed  Google Scholar 

  • Mouchiroud D, Fichant G, Bernardi G (1987) Compositional compartmentalization and gene composition in the genomes of vertebrates. J Mol Evol 26:198–204

    PubMed  Google Scholar 

  • Mouchiroud D, Gautier C, Bernardi G (1988) The compositional distribution of coding sequences and DNA molecules in humans and murids. J Mol Evol 27:311–320

    PubMed  Google Scholar 

  • Nelson JS (1984) Fishes of the world, ed 2. Wiley, New York

    Google Scholar 

  • Ohno S, Atkins NB (1966) Comparative DNA values and chromosome complements of right species of fishes. Chromosoma 18:455–466

    Article  PubMed  Google Scholar 

  • Olmo E (1981) Evolution of genome size and DNA base composition in reptiles. Genetica 57:39–50

    Article  Google Scholar 

  • Olmo E, Stingo V, Cobror O, Capriglione T, Odierna G (1982) Repetitive DNA and polyploidy in selachians. Comp Biochem Physiol 73B:739–745

    Article  Google Scholar 

  • Olmo E, Capriglione T, Odierna G (1989) Genome size evolution in vertebrates: trends and constraints. Comp Biochem Physiol 92B:447–453

    Article  Google Scholar 

  • Olofsson B, Bernardi G (1983) Organization of nucleotide sequences in the chicken genome. Eur J Biochem 130:241–245

    Article  PubMed  Google Scholar 

  • Pedersen RA (1971) DNA content, ribosomal gene multiplicity and cell size in fishes. J Exp Zool 177:65–78

    Article  PubMed  Google Scholar 

  • Perrin P, Bernardi G (1987) Directional fixation of mutations in vertebrate evolution. J Mol Evol 26:301–310

    PubMed  Google Scholar 

  • Pizon V (1983) Organisation des séquences nucléotidiques dans les génomes de poissons. Thèse de 3è cycle, Université Paris VI

  • Pizon V, Cuny G, Bernardi G (1984) Nucleotide sequence organization in the very small genome of a tetraodontid fish,Arothron diadematus. Eur J Biochem 140:25–30

    Article  PubMed  Google Scholar 

  • Prunell A, Bernardi G (1973) Fractionation of native and denatured DNA on agarose columns. J Biol Chem 248:3433–3440

    PubMed  Google Scholar 

  • Rasch EM, Darnell RM, Kallman KD, Abramoff P (1965) Cytophotometric evidence for triploidy in hybrids of the gynogenetic fish,Poecilia formosa. J Exp Zool 160:155–169

    PubMed  Google Scholar 

  • Salinas J, Zerial M, Filipski J, Bernardi G (1986) Gene distribution and nucleotide sequence organization in the mouse genome. Eur J Biochem 106:469–478

    Article  Google Scholar 

  • Schildkraut CL, Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol 4:430–443

    PubMed  Google Scholar 

  • Schmid CW, Hearst JE (1972) Sedimentation equilibrium of DNA samples heterogeneous in density. Biopolymers 11:1913–1918

    Article  PubMed  Google Scholar 

  • Schmid M, Guttenbach M (1988) Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma 97:101–114

    Article  PubMed  Google Scholar 

  • Schwartz FJ, Maddock MB (1986) Comparisons of karyotypes and cellular DNA contents within and between major lines of elasmobranchs. In: Uyeno T, Arai R, Taniuchi T, Matsuura K (eds) Indo-Pacific fish biology. Ichthyological Society of Japan, Tokyo, pp 148–157

    Google Scholar 

  • Sober HA (ed) (1970) Handbooks of biochemistry. CRC Press, Cleveland OH, p H-109

    Google Scholar 

  • Stingo V (1986) Correlazioni tra quantità di DNA totale e DNA DAPI-positivo in Teleostei e Selaci. Basic Appl Histochem [Suppl] 30:164

    Google Scholar 

  • Stingo V, Du Buit MH, Odierna G (1980) Genome size of some selachian fishes. Bol Zool 47:129–137

    Google Scholar 

  • Stingo V, Capriglione T, Rocco L, Improta R, Morescalchi (1989) Genome size and A-T rich DNA in selachians. Genetica 79: 197–205

    Article  Google Scholar 

  • Szybalski W (1968) Use of cesium sulfate for equilibrium density gradient centrifugation. In: Grossmann L, Moldave K (eds) Methods in enzymology, part B, vol 12. Academic Press, New York, pp 330–360

    Google Scholar 

  • Thiery JP, Macaya G, Bernardi G (1976) An analysis of eukaryotic genomes by density gradient centrifugation. J Mol Biol 108:219–235

    PubMed  Google Scholar 

  • Thompson KW (1976) Some aspects of chromosome evolution of the Cychlidae (Teleostei, Perciformes) with emphasis on neotropical forms. Ph.D. dissertation, University of Texas, Austin, Texas

    Google Scholar 

  • Zerial M, Salinas J, Filipski J, Bernardi G (1986) Gene distribution and nucleotide sequence organization in the human genome. Eur J Biochem 160:479–485

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, G., Bernardi, G. Compositional patterns in the nuclear genome of cold-blooded vertebrates. J Mol Evol 31, 265–281 (1990). https://doi.org/10.1007/BF02101122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101122

Key words

Navigation