Skip to main content
Log in

Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A tree was constructed from a structurally conserved area in an alignment of 83 small ribosomal subunit sequences of eukaryotic, archaebacterial, eubacterial, plastidial, and mitochondrial origin. The algorithm involved computation and optimization of a dissimilarity matrix. According to the tree, only plant mitochondria belong to the eubacterial primary kingdom, whereas animal, fungal, algal, and ciliate mitochondria branch off from an internal node situated between the three primary kingdoms. This result is at variance with a parsimony tree of similar size published by Cedergren et al. (J Mol Evol 28∶98–112, 1988), which postulates the mitochondria to be monophyletic and to belong to the eubacterial primary kingdom. The discrepancy does not follow from the use of conflicting sequence alignments, hence it must be due to the use of different treeing algorithms. We tested our algorithm on a set of sequences resulting from a simulated evolution and found it capable of faith-fully reconstructing a branching topology that involved very unequal evolutionary rates. The use of more limited or more extended areas of the complete sequence alignment, comprising only very conserved or also more variable portions of the small ribosomal subunit structure, does have some influence on the tree topology. In all cases, however, the nonplant mitochondria seem to branch off before the emergence of eubacteria, and the differences are limited to the branching pattern among different types of mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

srRNA:

small ribosomal subunit RNA

References

  • Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible missing link among archaebacteria. Nature 327:348–349

    Article  PubMed  Google Scholar 

  • Achenbach-Richter L, Gupta R, Zillig W, Woese CR (1988) Rooting the archaebacterial tree: the pivotal role ofThermococcus celer in archaebacterial evolution. Syst Appl Microbiol 10:231–240

    PubMed  Google Scholar 

  • Benne R, Sloof P (1987) Evolution of the mitochondrial protein synthetic machinery. BioSystems 21:51–68

    Article  PubMed  Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon fromEscherichia coli. J Mol Biol 148:107–127

    Article  PubMed  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    PubMed  Google Scholar 

  • Cedergren R, Gray MW, Abel Y, Sankoff D (1988) The evolutionary relationships among known life forms. J Mol Evol 28:98–112

    PubMed  Google Scholar 

  • Clemmey H (1976) World's oldest animal traces. Nature 261:576–578

    Article  Google Scholar 

  • Dams E, Yamada T, De Baere R, Huysmans E, Vandenberghe A, De Wachter R (1987) Structure of 5S rRNA in actinomycetes and relatives and evolution of eubacteria. J Mol Evol 25:255–260

    Article  PubMed  Google Scholar 

  • Dams E, Hendriks L, Van de Peer Y, Neefs J-M, Smits G, Vandenbempt I, De Wachter R (1988) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16:r87-r173

    PubMed  Google Scholar 

  • de la Cruz VF, Lake JA, Simpson AM, Simpson L (1985) A minimal ribosomal RNA: sequence and secondary structure of the 9S kinetoplast ribosomal RNA fromLeishmania tarentolae. Proc Natl Acad Sci USA 82:1401–1405

    PubMed  Google Scholar 

  • de Soete G (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626

    Google Scholar 

  • Dickerson RE, Timkovich R, Almassy RJ (1976) The cytochrome fold and the evolution of bacterial energy metabolism. J Mol Biol 100:473–491

    PubMed  Google Scholar 

  • Dorsch M, Moreno E, Stackebrandt E (1989) Nucleotide sequence of the 16S rRNA fromBrucella abortus. Nucleic Acids Res 17:1765

    PubMed  Google Scholar 

  • Emberger L (1968) Les plantes fossiles dans leurs rapports avec les végétaux vivants. Masson et Cie, Paris

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    PubMed  Google Scholar 

  • Fox TD (1987) Natural variation in the genetic code. Annu Rev Genet 21:67–91

    PubMed  Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    PubMed  Google Scholar 

  • Gray MW (1982) Mitochondrial genome diversity and the evolution of mitochondrial DNA. Can J Biochem 60:157–171

    PubMed  Google Scholar 

  • Gray MW (1988) Organelle origins and ribosomal RNA. Biochem Cell Biol 66:325–348

    PubMed  Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46:1–42

    PubMed  Google Scholar 

  • Gray MW, Sankoff D, Cedergren RJ (1984) On the evolutionary events of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 12:5837–5853

    PubMed  Google Scholar 

  • Gray MW, Cedergren R, Abel Y, Sankoff D (1989) On the evolutionary origin of the plant mitochondrion and its genome. Proc Natl Acad Sci USA 86:2267–2271

    Google Scholar 

  • Hendriks L, Van Broeckhoven C, Vandenberghe A, Van de Peer Y, De Wachter R (1988) Primary and secondary structure of the 18S ribosomal RNA of the bird spider.Eurypelma californica and evolutionary relationships among eukaryotic phyla. Eur J Biochem 177:15–20

    Article  PubMed  Google Scholar 

  • Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4:445–472

    PubMed  Google Scholar 

  • Hunt LT, George DG, Barker WC (1985) The prokaryote-eukaryote interface. BioSystems 18:223–240

    Article  PubMed  Google Scholar 

  • Huysmans E, De Wachter R (1986) The distribution of 5S ribosomal RNA sequences in phenetic hyperspace. Implications for eubacterial, eukaryotic, archaebacterial and early biotic evolution. Endocyt C Res 3:133–155

    Google Scholar 

  • John P, Whatley FR (1975)Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254:495–498

    Article  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol III. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  Google Scholar 

  • Kimura M, Ohta T (1972) On the stochastic model for estimation of mutational distance between homologous proteins. J Mol Evol 2:87–90

    PubMed  Google Scholar 

  • Küntzel H, Köchel HG (1981) Evolution of rRNA and origin of mitochondria. Nature 293:751–755

    Article  PubMed  Google Scholar 

  • Lake JA (1987) Prokaryotes and archaebacteria are not monophyletic: rate invariant analysis of rRNA gene indicates that eukaryotes and eocytes form a monophyletic taxon. Cold Spring Harbor Symp Quant Biol 52:839–846

    PubMed  Google Scholar 

  • Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331:184–186

    PubMed  Google Scholar 

  • McCarroll R, Olsen GJ, Stahl YD, Woese CR, Sogin ML (1983) Nucleotide sequence of theDictyostelium discoideum small-subunit ribosomal ribonucleic acid inferred from the gene sequence: evolutionary implications. Biochemistry 22:5858–5868

    Article  Google Scholar 

  • Mikelsaar R (1987) A view of early cellular evolution. J Mol Evol 25:168–183

    PubMed  Google Scholar 

  • Nagae Y, Fujii H, Yoneyama Y, Goto Y, Okazaki T (1988) Nucleotide sequence of theRana catesbeiana mitochondrial small (12S) and large (16S) ribosomal RNA genes. Nucleic Acids Res 16:10363

    PubMed  Google Scholar 

  • Press WH, Flannery DP, Teukolsky SA, Vetterling WT (1985) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Ree HK, Cao K, Thurlow DL, Zimmerman RA (1989) The structure and organization of the 16S ribosomal RNA gene from the archaebacteriumThermoplasma acidophylum. Can J Microbiol 35:124–133

    PubMed  Google Scholar 

  • Rensch B (1972) Neuere Probleme der Abstammungslehre. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Sarich VM, Wilson AC (1967) Immunological time scale for hominid evolution. Science 158:1200–1202

    PubMed  Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199:395–403

    PubMed  Google Scholar 

  • Sloof P, Van den Burg J, Voogd A, Benne R, Agostinelli M, Borst P, Gutell R, Noller H (1985) Further characterisation of the extremely small mitochondrial ribosomal RNAs from trypanosomes: a detailed comparison of the 9S and 12S RNAs fromCrithidia fasciculata andTrypanosoma brucei with rRNA from other organisms. Nucleic Acids Res 13:4171–4190

    PubMed  Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38:321–325

    Google Scholar 

  • Van den Eynde H, De Baere R, De Roeck E, Van de Peer Y, Vandenberghe A, Willekens P, De Wachter R (1988) The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria. J Mol Evol 27:126–132

    PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  Google Scholar 

  • Woese CR, Fox E (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    PubMed  Google Scholar 

  • Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the urkingdoms. Syst Appl Microbiol 7:161–177

    PubMed  Google Scholar 

  • Wolters J, Erdmann VA (1989) The structure and evolution of archaebacterial ribosomal RNAs. Can J Microbiol 35:43–51

    PubMed  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van de Peer, Y., Neefs, JM. & De Wachter, R. Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins. J Mol Evol 30, 463–476 (1990). https://doi.org/10.1007/BF02101118

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101118

Key words

Navigation