Journal of Molecular Evolution

, Volume 30, Issue 5, pp 456–462 | Cite as

Simple repetitive sequences are associated with differentiation of the sex chromosomes in the guppy fish

  • Indrajit Nanda
  • Wolfgang Feichtinger
  • Michael Schmid
  • Johannes H. Schröder
  • Hans Zischler
  • Jörg T. Epplen
Article

Summary

Hybridization of restriction enzymedigested genomic guppy (Poecilia reticulata, Poeciliidae) DNA with the oligonucleotide probe (GACA)4 revealed a male-specific simple tandem repeat locus, which defines the Y chromosome in outbred populations. The related (GATA)4 probe identifies certain males with the red color phenotype. In contrast only in two out of eight laboratory guppy strains was the typical (GACA)4 band observed. By specific staining of the constitutive heterochromatin one pair of chromosomes could also be identified as the sex chromosomes, confirming the XX/XY mechanism of sex determination. All males exhibit Y chromosomes with a large region of telomeric heterochromatin. Hybridization in situ with nonradioactively labeled oligonucleotide probes localized the (GACA)n repeats to this heterochromatic portion. Together these results may be regarded as a recent paradigm for the differentiation of heteromorphic sex chromosomes from a pair of autosomes during the course of evolution. According to the fish model system, this may have happened in several independent consecutive steps.

Key words

Chromosomal sex determination Heterochromatin “Junk” DNA DNA fingerprinting Oligonucleotide hydridization in situ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beçak W (1983) Evolution and differentiation of sex chromosomes in lower vertebrates. In: Müller U, Franke WW (eds) Mechanism of gonadal differentiation in vertebrates. Differentiation [Suppl] 23:3–12Google Scholar
  2. Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3:2303–2308PubMedGoogle Scholar
  3. Epplen JT (1988) On simple repeated GATA/GACA sequences in animal genomes: a critical reappraisal. J Hered 79:409–417PubMedGoogle Scholar
  4. Haaf T, Schmid M (1984) An early stage of ZW/ZZ sex chromosome differentiation inPoecilia sphenops var.melanistica (Poeciliidae, Cyprinodontiformes). Chromosoma 89:37–41CrossRefGoogle Scholar
  5. Kallman KD (1984) A new look at sex determination in poeciliid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum Press, New York, pp 95–171Google Scholar
  6. Kirpichnikov VS (1981) Genetic bases of fish selection. Springer Verlag, BerlinGoogle Scholar
  7. Ohno S (1967) Sex chromosomes and sex linked genes. Springer Verlag, BerlinGoogle Scholar
  8. Ohno S (1972) So much “junk” in our genome. In: Smith HH (ed) Evolution of genetic systems. Gordon and Breach, New York, pp 366–370Google Scholar
  9. Ohno S (1974) Protochordata, cyclostomata and pisces. In: John B (ed) Animal cytogeneitcs, vol 4. Chordata 1. Bornträger, BerlinGoogle Scholar
  10. Schäfer R, Zischler H, Birsner U, Becker A, Epplen JT (1988) Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9:369–374CrossRefPubMedGoogle Scholar
  11. Schmid M (1983) Evolution of sex chromosomes and heterogametic systems in Amphibia. In: Müller U, Franke WW (eds) Mechanisms of gonadal differentiation in vertebrates. Differentiation [Suppl] 23:13–22Google Scholar
  12. Schröder JH (1983) The guppy (Poecilia reticulata Peters) as a model for evolutionary studies in genetics, behavior, and ecology. Beratungen Naturwiss-medizin Verein Innsbruck 70:249–279Google Scholar
  13. Singh L, Purdom IF, Jones KW (1981) Conserved sex chromosome-associated nucleotide sequences in eukaryotes. Cold Spring Harbor Symp Quant Biol 45:805–814PubMedGoogle Scholar
  14. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306CrossRefPubMedGoogle Scholar
  15. Winge O (1922) One-sided masculine and sex-linked inheritance inLebistes reticulatus. J Genet 12:145–162Google Scholar
  16. Winge O, Ditlevsen E (1947) Color inheritance and sex-determination inLebistes. Heredity 1:65–83Google Scholar
  17. Zischler H, Nanda I, Schäfer R, Schmid M, Epplen JT (1989) Digoxigenated oligonucleotide probes specific for simple repeats in DNA fingerprinting and hybridization in situ. Hum Genet 82:227–233CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Indrajit Nanda
    • 1
  • Wolfgang Feichtinger
    • 1
  • Michael Schmid
    • 1
  • Johannes H. Schröder
    • 2
  • Hans Zischler
    • 3
  • Jörg T. Epplen
    • 3
  1. 1.Institut für Humangenetik der UniversitätWürzburgFederal Republic of Germany
  2. 2.Institut für StrahlenbiologieGesellschaft für Strahlen- und Umweltforschung MünchenNeuherbergFederal Republic of Germany
  3. 3.Max-Planck-Institut für PsychiatrieMartinsriedFederal Republic of Germany

Personalised recommendations