Advertisement

Inventiones mathematicae

, Volume 108, Issue 1, pp 263–287 | Cite as

On the conjecture of Birch and Swinnerton-Dyer for abelian varieties over function fields in characteristicp>0

  • Werner Bauer
Article

Keywords

Function Field Abelian Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] Berthelot, P.: Cohomologie cristalline des schémas de caractéristiquep>0. (Lect. Notes Math., vol. 407) Berlin Heidelberg New York: Springer 1974Google Scholar
  2. [B-B-M] Berthelot, P., Breen, L., Messing, W.: Théorie de Dieudonné Cristalline II. (Lect. Notes Math., vol. 930) Berlin Heidelberg New York: Springer 1982Google Scholar
  3. [B-I] Berthelot, P., Illusie, L.: Classes de Chern en cohomologie cristalline. C.R. Acad. Sci., Paris270, 1695–1697 (1970)Google Scholar
  4. [E] Etesse, J.-Y.: Rationalité et valeurs de fonctionsL en cohomologie cristalline, Ann. Inst. Fourier38(4), 33–92 (1988)Google Scholar
  5. [F] Fontaine, J.-M.: Letter to W. Bauer. (July 16th, 1991)Google Scholar
  6. [F-M] Fontaine, J.-M.: Messing, W.:p-adic periods andp-adic étale cohomology, (Contemp. Math. vol. 67, pp. 179–207) Providence, RI: Am. Math. Soc. (1987)Google Scholar
  7. [G] Gros, M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Bull. Soc. Math. Fr.21 (1985)Google Scholar
  8. [I] Illusie, L.: Complexe de De Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér.12, 501–661 (1979)Google Scholar
  9. [K] Kato, K.: Semi-stable reduction andp-adic étale cohomology. (Preprint 1989)Google Scholar
  10. [K-M] Katz, N., Messing, W.: Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math.23, 73–77 (1974)Google Scholar
  11. [K-O] Katsura, T., Oort, F.: Families of supersingular abelian surfaces. Compos. Math.62, 107–167 (1987)Google Scholar
  12. [KÖ] Köck, B.: Die syntomische Kohomologie. Manuscript, Regensburg (1989)Google Scholar
  13. [L] Lang, S.: Rapport sur la Cohomologie des Groupes. New York: Benjamin 1966Google Scholar
  14. [MB] Moret-Bailly, L.: Families de courbes et de variétés abéliennes sur ℙ1, II. Examples. Astérisque86, 125–140 (1981)Google Scholar
  15. [ME] Messing, W.: Letter to W. Bauer. (May 25th, 1990)Google Scholar
  16. [M1] Milne, J.: The Tate-Šafarevič Group of a Constant Abelian Variety. Invent. Math.6, 91–105 (1968)Google Scholar
  17. [M2] Milne, J.: On a conjecture of Artin and Tate. Ann. Math.102, 517–533 (1975)Google Scholar
  18. [M3] Milne, J.: Étale cohomology Princeton: Princeton University Press 1980Google Scholar
  19. [M4] Milne, J.: Comparison of the Brauer group with the Tate-Šafarevič group. J. Fac. Sci. Univ. Tokyo, Sect. IA28, 735–743 (1981)Google Scholar
  20. [M5] Milne, J.: Arithmetic Duality Theorems. (Perspect. Math. vol. 1) Boston: Academic Press 1986Google Scholar
  21. [M6] Milne, J.: Values of zeta functions of varieties over finite fields. Am. J. Math.108, 297–360 (1986)Google Scholar
  22. [N] Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math.82, 249–331 (1965)Google Scholar
  23. [S1] Schneider, P.: Zur Vermutung von Birch und Swinnerton-Dyer über globalen Funktionenkörpern. Math. Ann.260, 495–510 (1982)Google Scholar
  24. [S2] Schneider, P.:p-adic height pairings II. Invent. Math.79, 329–374 (1985)Google Scholar
  25. [T] Tamme, G.:B cris. Talk at Oberwolfach (1989)Google Scholar
  26. [TA] Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki, exposé 306 (1965/66)Google Scholar
  27. [EGA IV] Grothendieck, A., Dieudonné, J.: Eléments de Géométrie Algébrique, Étude locale des schémas et des morphismes de schémas. Publ. Math., Inst. Hautes Étud. Sci.20 (1964);24 (1965);28 (1966);32 (1967)Google Scholar
  28. [SGA 4] Séminaire de Géométrie Algébrique 4. Théorie des topos et cohomologie étale de schémas, par M. Artin, A. Grothendieck, J.-L. Verdier. (Lect. Notes Math., vols. 269, 270, 305) Berlin Heidelberg New York: Springer 1972–73Google Scholar
  29. [SGA 6] Séminaire de Géométrie Algébrique 6. Théorie des intersections et théorème de Riemann-Roch, par P. Berthelot, A. Grothendieck, L. Illusie. (Lect. Notes Math., vol. 225) Berlin Heidelberg New York: Springer 1971Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Werner Bauer
    • 1
  1. 1.Fachbereich MathematikUniversität-Gesamthochschule WuppertalWuppertal 1Federal Republic of Germany

Personalised recommendations