Inventiones mathematicae

, Volume 108, Issue 1, pp 263–287 | Cite as

On the conjecture of Birch and Swinnerton-Dyer for abelian varieties over function fields in characteristicp>0

  • Werner Bauer
Article

Keywords

Function Field Abelian Variety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] Berthelot, P.: Cohomologie cristalline des schémas de caractéristiquep>0. (Lect. Notes Math., vol. 407) Berlin Heidelberg New York: Springer 1974Google Scholar
  2. [B-B-M] Berthelot, P., Breen, L., Messing, W.: Théorie de Dieudonné Cristalline II. (Lect. Notes Math., vol. 930) Berlin Heidelberg New York: Springer 1982Google Scholar
  3. [B-I] Berthelot, P., Illusie, L.: Classes de Chern en cohomologie cristalline. C.R. Acad. Sci., Paris270, 1695–1697 (1970)Google Scholar
  4. [E] Etesse, J.-Y.: Rationalité et valeurs de fonctionsL en cohomologie cristalline, Ann. Inst. Fourier38(4), 33–92 (1988)Google Scholar
  5. [F] Fontaine, J.-M.: Letter to W. Bauer. (July 16th, 1991)Google Scholar
  6. [F-M] Fontaine, J.-M.: Messing, W.:p-adic periods andp-adic étale cohomology, (Contemp. Math. vol. 67, pp. 179–207) Providence, RI: Am. Math. Soc. (1987)Google Scholar
  7. [G] Gros, M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Bull. Soc. Math. Fr.21 (1985)Google Scholar
  8. [I] Illusie, L.: Complexe de De Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér.12, 501–661 (1979)Google Scholar
  9. [K] Kato, K.: Semi-stable reduction andp-adic étale cohomology. (Preprint 1989)Google Scholar
  10. [K-M] Katz, N., Messing, W.: Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math.23, 73–77 (1974)Google Scholar
  11. [K-O] Katsura, T., Oort, F.: Families of supersingular abelian surfaces. Compos. Math.62, 107–167 (1987)Google Scholar
  12. [KÖ] Köck, B.: Die syntomische Kohomologie. Manuscript, Regensburg (1989)Google Scholar
  13. [L] Lang, S.: Rapport sur la Cohomologie des Groupes. New York: Benjamin 1966Google Scholar
  14. [MB] Moret-Bailly, L.: Families de courbes et de variétés abéliennes sur ℙ1, II. Examples. Astérisque86, 125–140 (1981)Google Scholar
  15. [ME] Messing, W.: Letter to W. Bauer. (May 25th, 1990)Google Scholar
  16. [M1] Milne, J.: The Tate-Šafarevič Group of a Constant Abelian Variety. Invent. Math.6, 91–105 (1968)Google Scholar
  17. [M2] Milne, J.: On a conjecture of Artin and Tate. Ann. Math.102, 517–533 (1975)Google Scholar
  18. [M3] Milne, J.: Étale cohomology Princeton: Princeton University Press 1980Google Scholar
  19. [M4] Milne, J.: Comparison of the Brauer group with the Tate-Šafarevič group. J. Fac. Sci. Univ. Tokyo, Sect. IA28, 735–743 (1981)Google Scholar
  20. [M5] Milne, J.: Arithmetic Duality Theorems. (Perspect. Math. vol. 1) Boston: Academic Press 1986Google Scholar
  21. [M6] Milne, J.: Values of zeta functions of varieties over finite fields. Am. J. Math.108, 297–360 (1986)Google Scholar
  22. [N] Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math.82, 249–331 (1965)Google Scholar
  23. [S1] Schneider, P.: Zur Vermutung von Birch und Swinnerton-Dyer über globalen Funktionenkörpern. Math. Ann.260, 495–510 (1982)Google Scholar
  24. [S2] Schneider, P.:p-adic height pairings II. Invent. Math.79, 329–374 (1985)Google Scholar
  25. [T] Tamme, G.:B cris. Talk at Oberwolfach (1989)Google Scholar
  26. [TA] Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Sém. Bourbaki, exposé 306 (1965/66)Google Scholar
  27. [EGA IV] Grothendieck, A., Dieudonné, J.: Eléments de Géométrie Algébrique, Étude locale des schémas et des morphismes de schémas. Publ. Math., Inst. Hautes Étud. Sci.20 (1964);24 (1965);28 (1966);32 (1967)Google Scholar
  28. [SGA 4] Séminaire de Géométrie Algébrique 4. Théorie des topos et cohomologie étale de schémas, par M. Artin, A. Grothendieck, J.-L. Verdier. (Lect. Notes Math., vols. 269, 270, 305) Berlin Heidelberg New York: Springer 1972–73Google Scholar
  29. [SGA 6] Séminaire de Géométrie Algébrique 6. Théorie des intersections et théorème de Riemann-Roch, par P. Berthelot, A. Grothendieck, L. Illusie. (Lect. Notes Math., vol. 225) Berlin Heidelberg New York: Springer 1971Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Werner Bauer
    • 1
  1. 1.Fachbereich MathematikUniversität-Gesamthochschule WuppertalWuppertal 1Federal Republic of Germany

Personalised recommendations