Abstract
Umegaki's relative entropyS(ω,ϕ)=TrD ω(logD ω−logD ϕ) (of states ω and ϕ with density operatorsD ω andD ϕ, respectively) is shown to be an asymptotic exponent considered from the quantum hypothesis testing viewpoint. It is also proved that some other versions of the relative entropy give rise to the same asymptotics as Umegaki's one. As a byproduct, the inequality TrA logAB ≧TrA(logA+logB) is obtained for positive definite matricesA andB.
Similar content being viewed by others
References
Araki, H.: Relative entropy of states of von Neumann algebras. Publ. RIMS, Kyoto Univ.11, 809–833 (1976).
Araki, H.: Relative entropy for states of von Neumann algebras II. Publ. RIMS, Kyoto Univ.13, 173–192 (1977)
Billingsley, P.: Ergodic theory and information. New York: Wiley 1965
Blahut, R.E.: Principles and practice of information theory Reading, MA: Addison-Wesley 1987
Belavkin, V.P., Staszewski, P.:C *-algebraic generalization of relative entropy and entropy. Ann. Inst. H. Poincaré Sect. A37, 51–58 (1982)
Connes, A., Størmer, E.: Entropy for automorphisms of II1 von Neumann algebras. Acta Math.134, 289–306 (1975)
Csiszár, I., Körner, J.: Information theory, coding theorems for discrete memorlyess systems. Budapest: Akadémiai Kiadó Orlando: Academic Press 1981
Donald, M.J.: On the relative entropy.Commun. Math. Phys.105, 13–34 (1986)
Donald, M.J.: Continuity and relative hamiltonians. Commun. Math. Phys.136, 625–632 (1991)
Doplicher, S., Kasteler, D.: Ergodic states in a non-commutative ergodic theory. Commun. Math. Phys.7, 1–20 (1968)
Ellis, R.S.: Entropy, large deviations, and statistical mechanics. Berlin, heidelberg, new York: Springer 1985
Fujii, J.I., Kamei, E.: Relative operator entropy in noncommutative information theory. Math. Japon.34, 341–348 (1989)
Helstrom, C.W.: Quantum detection and estimation theory. New York: Academic Press 1976
Hiai, F., Ohya, M., Tsukada, M.: Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacific J. Math.96, 99–109 (1981)
Hiai, F., Ohya, M., Tsukada, M.: Sufficiency and relative entropy in *-algebras with applications in quantum systems. Pacific J. Math.107, 117–140 (1983)
Kosaki, H.: Relative entropy of states: a variational expression J. Operator Theory16, 335–348 (1986)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Statist.22, 79–86 (1951)
Kovács, I., Szücs, J.: Ergodic type theorems in von Neumann algebras. Acta Sci. Math.27, 233–246 (1966)
Ohya, M., Petz, D.: Notes on quantum entropy. Preprint
Ohya, M., Tsukada, M., Umegaki, H.: A formulation of noncommutative McMillan theorem. Proc. Jpn. Acad.63A, 50–53 (1987)
Parry, W.: Properties of quantum entropy. In: Accaridi, L., von Waldenfels, W. (eds.) Quantum probability and applications. II. Lect.Notes Math., Vol. 1136, pp. 428–441. Berlin, Heidelberg, New York: Springer 1985
Petz, D.: Properties of the relative entropy of states of von neumann algebras. ActaMath. Hungar.47, 65–72 (1986)
Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neuman algebra. Commun. Math. Phys.105, 123–131 (1986)
Petz, D.: First steps towards a Donsker and Varadhan theory in operator algebras. Lect. Notes Math., Vol. 1442, pp. 311–319. Berlin, heidelberg, New York: Springer 1990
Petz, D.: On certain properties of the relative entropy of states of operator algebras. Math. Z. (to appear)
Petz. D.: Characterization of the relative entropy of states of matrix algebras. Preprint
Petz, D., Raggio, G.A., Verbeure, A.: Asymptotics of Varadhan-type and Gibbs variational principle. Commun. Math. Phys.121, 271–282 (1989)
Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta62, 980–1003 (1989)
Størmer, E.: Large grups of automorphisms ofC *-algebras. Commun. Math. Phys.5, 1–22 (1967)
Takesaki, M.: Conditional expectations in von Neumann algegras. J. Funct. Anal.9, 306–321 (1972)
Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys.54, 21–32 (1977)
Umegaki, H.: Conditional expectation in an operator algebra, IV (entropy and information). Kōdai Math. Sem. Rep.14, 59–85 (1962)
Author information
Authors and Affiliations
Additional information
Communicated by H. Araki
Rights and permissions
About this article
Cite this article
Hiai, F., Petz, D. The proper formula for relative entropy and its asymptotics in quantum probability. Commun.Math. Phys. 143, 99–114 (1991). https://doi.org/10.1007/BF02100287
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02100287