[ApH] Applebaum, D.B., Hudson, R.L.: Fermion Ito's formula and stochastic evolutions. Commun. Math. Phys.96, 473–496 (1984)
Google Scholar
[Avi] Avitzour, D.: Free products ofC
*-algebras. Trans. Am. Math. Soc.271, 423–435 (1982)
Google Scholar
[BJS] Bożejko, M., Januszkiewics, T., Spatzier, R.J.: Infinite Coxeter groups do not have Kazhdan's property. J. Operator Theory,19, 63–68 (1988)
Google Scholar
[BSW] Barnett, C., Streater, R.F., Wilde, I.F.: The Ito-Clifford-integral: J. Funct. Anal.48, 172–212 (1982)
Google Scholar
[CoH] Cockroft, A.M., Hudson, R.L.: Quantum mechanical Wiener process. J. Multivariate Anal.7, 107–124 (1977)
Google Scholar
[CuH] Cushen, C.D., Hudson, R.L.: A quantum-mechanical central limit theorem. J. Appl. Prob.8, 454–469 (1971)
Google Scholar
[Cun] Cuntz, J.: SimpleC
*-algebras generated by isometries. Commun. Math. Phys.57, 173–185 (1977)
Google Scholar
[Eva] Evans, D.E.: OnO
n
. Publ. RIMS, Kyoto Univ.16, 915–927 (1980)
Google Scholar
[GvW] Giri, N., von Waldenfels, W.: An algebraic version of the central limit theorem. Z. Wahrscheinlichkeitstheorie Verw. Gebiete42, 129–134 (1978)
Google Scholar
[Gre] Greenberg, O.W.:Q-mutators and violations of statistics. University of Maryland Preprint 91-034, 1990
[Heg] Hegerfeld, G.C.: Noncommutative analogs of probabilistic notions and results. J. Funct. Anal.64, 436–456 (1985)
Google Scholar
[HuP] Hudson, R.L., Parthasarathy, K.R.: Quantum Ito's formula and stochastic evolution. Commun. Math. Phys.93, 301–323 (1984)
Google Scholar
[Küm 1] Kümmerer, B.: Survey on a theory of non-commutative stationary Markov processes. In: Quantum probability and applications. III. Oberwolfach 1987, Lecture Notes in Mathematics, vol. 1303. Berlin, Heidelberg, New York: Springer 1988, pp. 154–182
Google Scholar
[Küm 2] Kümmerer, B.: Markov dilations and non-commutative Poisson processes. Preprint
[KPr] Kümmerer, B., Prin, J.: Generalized white noise and non-commutative stochastic integration. Preprint
[KSp] Kümmerer, B., Speicher, R.: Stochastic integration on the Cuntz-algebraO
∞. Preprint
[Maa 1] Maassen, H.: Theoretical concepts in quantum probability; quantum Markov processes. Preprint, Nijmegen 1988
[Maa 2] Maassen, H.: Quantum Markov processes on Fock space described by integral kernels. In: Quantum probability and applications. II. Heidelberg 1984, Lecture Notes in Mathematics, vol. 1136, Berlin, Heidelberg, New York: Springer 1985, pp. 361–374
Google Scholar
[LiP] Lindsay, J.M., Parthasarathy, K.R.: Cohomology of power sets with applications in quantum probability. Commun. Math. Phys.124, 337–364 (1989)
Google Scholar
[PWo] Pusz, W., Woronowicz, S.L.: Twisted second quantization. Preprint
[Sch] Schur, I.: Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Reine Angew. Math.140, 1–29 (1911)
Google Scholar
[Sma] Schürmann, M.: Quantum stochastic processes with independent and additive increments. Preprint, Heidelberg 1989
[Spe 1] Speicher, R.: A new example of “Independence” and “White noise”. Probab. Th. Rel. Fields84, 141–159 (1990)
Google Scholar
[Spe 2] Speicher, R.: Stochastic integration on the full Fock space with the help of a kernel calculus. To appear in Publ. RIMS27 (1991)
[Spe 3] Speicher, R.: In preparation
[Voi 1] Voiculescu, D.: Symmetries of some reduced free productC
*-algebras. In: Operator algebras and their connection with topology and ergodic theory. Busteni, Romania, 1983, Lecture Notes in Mathematics, vol. 1132, Berlin, Heidelberg, New York: Springer 1985
Google Scholar
[Voi 2] Voiculescu, D.: Addition of certain non-commuting random variables. J. Funct. Anal.66, 323–346 (1986)
Google Scholar
[vWa] von Waldenfels, W.: An algebraic central limit theorem in the anti-commuting case. Z. Wahrscheinlichkeitstheorie Verw. Gebiete42, 135–140 (1978)
Google Scholar
[Wor 1] Woronowicz, S.L.: TwistedSU(2) group. An example of a non-commutative differential calculus. Publ. RIMS23, 117–181 (1987)
Google Scholar
[Wor 2] Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups. Invent. Math.93, 35–76 (1988)
Google Scholar