Communications in Mathematical Physics

, Volume 137, Issue 3, pp 519–531 | Cite as

An example of a generalized Brownian motion

  • Marek Bożejko
  • Roland Speicher


We present an example of a generalized Brownian motion. It is given by creation and annihilation operators on a “twisted” Fock space ofL2(ℝ). These operators fulfill (for a fixed −1≦μ≦1) the relationsc(f)c*(g)−μc*(g)c(f)=〈f,g〉1 (f, gL2(ℝ)). We show that the distribution of these operators with respect to the vacuum expectation is a generalized Gaussian distribution, in the sense that all moments can be calculated from the second moments with the help of a combinatorial formula. We also indicate that our Brownian motion is one component of ann-dimensional Brownian motion which is invariant under the quantum groupS ν U(n) of Woronowicz (withμ =v2).


Neural Network Gaussian Distribution Statistical Physic Complex System Brownian Motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ApH] Applebaum, D.B., Hudson, R.L.: Fermion Ito's formula and stochastic evolutions. Commun. Math. Phys.96, 473–496 (1984)Google Scholar
  2. [Avi] Avitzour, D.: Free products ofC *-algebras. Trans. Am. Math. Soc.271, 423–435 (1982)Google Scholar
  3. [BJS] Bożejko, M., Januszkiewics, T., Spatzier, R.J.: Infinite Coxeter groups do not have Kazhdan's property. J. Operator Theory,19, 63–68 (1988)Google Scholar
  4. [BSW] Barnett, C., Streater, R.F., Wilde, I.F.: The Ito-Clifford-integral: J. Funct. Anal.48, 172–212 (1982)Google Scholar
  5. [CoH] Cockroft, A.M., Hudson, R.L.: Quantum mechanical Wiener process. J. Multivariate Anal.7, 107–124 (1977)Google Scholar
  6. [CuH] Cushen, C.D., Hudson, R.L.: A quantum-mechanical central limit theorem. J. Appl. Prob.8, 454–469 (1971)Google Scholar
  7. [Cun] Cuntz, J.: SimpleC *-algebras generated by isometries. Commun. Math. Phys.57, 173–185 (1977)Google Scholar
  8. [Eva] Evans, D.E.: OnO n. Publ. RIMS, Kyoto Univ.16, 915–927 (1980)Google Scholar
  9. [GvW] Giri, N., von Waldenfels, W.: An algebraic version of the central limit theorem. Z. Wahrscheinlichkeitstheorie Verw. Gebiete42, 129–134 (1978)Google Scholar
  10. [Gre] Greenberg, O.W.:Q-mutators and violations of statistics. University of Maryland Preprint 91-034, 1990Google Scholar
  11. [Heg] Hegerfeld, G.C.: Noncommutative analogs of probabilistic notions and results. J. Funct. Anal.64, 436–456 (1985)Google Scholar
  12. [HuP] Hudson, R.L., Parthasarathy, K.R.: Quantum Ito's formula and stochastic evolution. Commun. Math. Phys.93, 301–323 (1984)Google Scholar
  13. [Küm 1] Kümmerer, B.: Survey on a theory of non-commutative stationary Markov processes. In: Quantum probability and applications. III. Oberwolfach 1987, Lecture Notes in Mathematics, vol. 1303. Berlin, Heidelberg, New York: Springer 1988, pp. 154–182Google Scholar
  14. [Küm 2] Kümmerer, B.: Markov dilations and non-commutative Poisson processes. PreprintGoogle Scholar
  15. [KPr] Kümmerer, B., Prin, J.: Generalized white noise and non-commutative stochastic integration. PreprintGoogle Scholar
  16. [KSp] Kümmerer, B., Speicher, R.: Stochastic integration on the Cuntz-algebraO . PreprintGoogle Scholar
  17. [Maa 1] Maassen, H.: Theoretical concepts in quantum probability; quantum Markov processes. Preprint, Nijmegen 1988Google Scholar
  18. [Maa 2] Maassen, H.: Quantum Markov processes on Fock space described by integral kernels. In: Quantum probability and applications. II. Heidelberg 1984, Lecture Notes in Mathematics, vol. 1136, Berlin, Heidelberg, New York: Springer 1985, pp. 361–374Google Scholar
  19. [LiP] Lindsay, J.M., Parthasarathy, K.R.: Cohomology of power sets with applications in quantum probability. Commun. Math. Phys.124, 337–364 (1989)Google Scholar
  20. [PWo] Pusz, W., Woronowicz, S.L.: Twisted second quantization. PreprintGoogle Scholar
  21. [Sch] Schur, I.: Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Reine Angew. Math.140, 1–29 (1911)Google Scholar
  22. [Sma] Schürmann, M.: Quantum stochastic processes with independent and additive increments. Preprint, Heidelberg 1989Google Scholar
  23. [Spe 1] Speicher, R.: A new example of “Independence” and “White noise”. Probab. Th. Rel. Fields84, 141–159 (1990)Google Scholar
  24. [Spe 2] Speicher, R.: Stochastic integration on the full Fock space with the help of a kernel calculus. To appear in Publ. RIMS27 (1991)Google Scholar
  25. [Spe 3] Speicher, R.: In preparationGoogle Scholar
  26. [Voi 1] Voiculescu, D.: Symmetries of some reduced free productC *-algebras. In: Operator algebras and their connection with topology and ergodic theory. Busteni, Romania, 1983, Lecture Notes in Mathematics, vol. 1132, Berlin, Heidelberg, New York: Springer 1985Google Scholar
  27. [Voi 2] Voiculescu, D.: Addition of certain non-commuting random variables. J. Funct. Anal.66, 323–346 (1986)Google Scholar
  28. [vWa] von Waldenfels, W.: An algebraic central limit theorem in the anti-commuting case. Z. Wahrscheinlichkeitstheorie Verw. Gebiete42, 135–140 (1978)Google Scholar
  29. [Wor 1] Woronowicz, S.L.: TwistedSU(2) group. An example of a non-commutative differential calculus. Publ. RIMS23, 117–181 (1987)Google Scholar
  30. [Wor 2] Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups. Invent. Math.93, 35–76 (1988)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Marek Bożejko
    • 1
  • Roland Speicher
    • 2
  1. 1.Instytut MatematycznyUniwersytet WrocławskiWrocławPoland
  2. 2.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations