Communications in Mathematical Physics

, Volume 173, Issue 1, pp 1–16 | Cite as

Branching rules for conformal embeddings

  • F. Levstein
  • J. I. Liberati
Article

Abstract

We give explicit formulas for the branching rules of the conformal embeddingssu(n(n+1)/2)1su(n)n+2,su(n(n−1)/2)1su(n)n−2,sp(n)1so(n)4su(2) n , andso(m+n)1so(m)1so(n)1 withm andn odd.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Explicit Formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-B-I] Altschuler, D., Bauer, M., Itzykson, C.: Commun. Math. Phys.132, 349–364 (1990)Google Scholar
  2. [A-G-O] Arcuri, R.C., Gomes, J.F., Olive, D.I.: Nucl. Phys. B285, 327–339 (1987)CrossRefGoogle Scholar
  3. [B-B] Bais, F., Bouwknegt, P.: Nucl. Phys. B279, 561 (1987)CrossRefGoogle Scholar
  4. [B-H] Bardakci, K., Halpern, M.: Phys. Rev. D3, 2493–2506 (1971)CrossRefGoogle Scholar
  5. [G-K-O] Goddard, P., Kent, A., Olive, D.: Phys. Lett. B152, 88–93 (1985)CrossRefGoogle Scholar
  6. [H] Halpern, M.: Phys. Rev. D4, 2398–2401 (1971)CrossRefGoogle Scholar
  7. [K] Kac, V.: Infinite dimensional Lie algebras. Third edition. Cambridge: Cambridge University Press, 1990Google Scholar
  8. [K-P] Kac, V., Peterson, D.: Proc. Natl. Acad. Sci. USA78, No. 6, 3308–3312 (1981)Google Scholar
  9. [K-S] Kac, V., Sanielevici, M.: Phys. Rev. D37, 2231–2237 (1988)CrossRefGoogle Scholar
  10. [K-W] Kac, V., Wakimoto, M.: Adv. in Math.70, 156–234 (1988)Google Scholar
  11. [N] Nahm, W.: Duke Math. J.54, 579–613 (1987)CrossRefGoogle Scholar
  12. [P] Parthasarathy, R.: Ann. Math.96, 1–30 (1972)Google Scholar
  13. [S-W] Schellekens, A., Warner, N.: Phys. Rev. D34, 3092–4010 (1986)CrossRefGoogle Scholar
  14. [V] Verstegen, D.: Commun. Math. Phys.137, 567–586 (1991)Google Scholar
  15. [W] Walton, M.A.: Nucl. Phys. B322, 775–790 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • F. Levstein
    • 1
  • J. I. Liberati
    • 1
  1. 1.Facultad de Matemática, Astronomía y FísicaUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations