Advertisement

Communications in Mathematical Physics

, Volume 179, Issue 3, pp 599–622 | Cite as

A Rohlin property for one-parameter automorphism groups

  • A. Kishimoto
Article

Abstract

We define a Rohlin property for one-parameter automorphism groups of unital simpleC*-algebras and show that for such an automorphism group any cocycle is almost a coboundary. We apply the same method to the single automorphism case and show that if an automorphism of a unital simpleC*-algebra with a certain condition has a central sequence of approximate eigen-unitaries for any complex number of modulus one, then any cocycle is almost a coboundary, or the automorphism has the stability. We also show that if a one-parameter automorphism group of a unital separable purely infinite simpleC*-algebra has the Rohlin property then the crossed product is simple and purely infinite.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Complex Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackadar, B., Cuntz, J.: The structure of stable algebraically simpleC *-algebras. Amer. J. Math.104, 813–822 (1982)Google Scholar
  2. 2.
    Bratteli, O., Elliott, G.A., Evans, D.E., Kishimoto, A.: Homotopy of a pair of approximately commuting unitaries in a simple unitalC *-algebra. PreprintGoogle Scholar
  3. 3.
    Bratteli, O., Evans, D.E., Kishimoto, A.: The Rohlin property for quasi-free automorphisms of the Fermion algebra. Proc. London Math. Soc.71, 675–694 (1995)Google Scholar
  4. 4.
    Bratteli, O., Evans, D.E., Kishimoto, A.: Almost shift invariant projections in infinite tensor products. In: Quantum and Non-Commutative Analysis. H. Araki et al. eds. Amsterdam: Kluwer, 1993, pp. 427–434Google Scholar
  5. 5.
    Bratteli, O., Kishimoto, A., Rørdam, M., Størmer, E.: The crossed product of a UHF algebra by a shift. Ergod. Th. & Dynam. Sys.13, 615–626 (1993)Google Scholar
  6. 6.
    Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics I. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  7. 7.
    Brown, L., Pedersen, G.K.:C *-algebras of real rank zero. J. Funct. Anal.99, 131–149 (1991)Google Scholar
  8. 8.
    Connes, A.: Outer conjugacy class of automorphisms of factors. Ann. Scient. Ec. Norm. Sup., 4e serie,8, 383–420 (1975)Google Scholar
  9. 9.
    Connes, A., Higson, N.: Deformations, morphismes asymptotiques et K-theorie bivariante. C. R. Acad. Sci. Par. Ser, I Math.310, 101–106 (1990)Google Scholar
  10. 10.
    Cuntz, J.: SimpleC *-algebras generated by isometries. Commun. Math. Phys.57, 173–185 (1977)Google Scholar
  11. 11.
    Cuntz, J.: K-theory for certainC *-algebras. Ann. Math.113, 181–197 (1981)Google Scholar
  12. 12.
    Herman, R.H., Ocneanu, A.: Stability for integer actions on UHFC *-algebras. J. Funct. Anal.59, 132–144 (1984)Google Scholar
  13. 13.
    Herman, R.H., Ocneanu, A.: Spectral analysis for automorphisms of UHFC *-algebras. J. Funct. Anal.66, 1–10 (1986)Google Scholar
  14. 14.
    Kishimoto, A.: Simple crossed products by locally compact abelian groups. Yokohama Math. J.28, 69–85 (1980)Google Scholar
  15. 15.
    Kishimoto, A.: Outer automorphisms and reduced crossed products of simpleC *-algebras. Commun. Math. Phys.81, 429–435 (1981)Google Scholar
  16. 16.
    Kishimoto, A.: Automorphisms and covariant irreducible representations. Yokohama Math. J.31, 159–168 (1983)Google Scholar
  17. 17.
    Kishimoto, A.: Type I orbits in the pure states of aC *-dynamical system, I, II. Publ. RIMS, Kyoto Univ.23, 321–336, 517–526 (1987)Google Scholar
  18. 18.
    Kishimoto, A.: Outer automorphism subgroups of a compact abelian ergodic action. J. Operator Theory20, 59–67 (1988)Google Scholar
  19. 19.
    Kishimoto, A.: The Rohlin property for shifts on UHF algebras and automorphisms of Cuntz algebras. J. Funct. Anal. (to appear)Google Scholar
  20. 20.
    Kishimoto, A.: The Rohlin property for automorphisms of UHF algebras. J. reine angew. Math.465, 183–196 (1995)Google Scholar
  21. 21.
    Kishimoto, A., Kumjian, A.: Simple stably projectionlessC *-algebras arising as crossed products. Canadian J. Math. (to appear)Google Scholar
  22. 22.
    Kishimoto, A., Kumjian, A.: Crossed products of Cuntz algebras by quasi-free automorphisms. Proceedings of the Fields Institute (to appear)Google Scholar
  23. 23.
    Kishimoto, A., Robinson, D.W.: Dissipations, derivations, dynamical systems, and asymptotic abelianess. J. Operator Theory13, 155–187 (1985)Google Scholar
  24. 24.
    Lin, H.: Exponential rank ofC *-algebras with real rank zero and the Brown-Pedersen conjecture. J. Funct. Anal.114, 1–11 (1993)Google Scholar
  25. 25.
    Pedersen, G.K.:C *-algebras and their automorphism groups. London, New York, San Fransisco: Academic Press, 1979Google Scholar
  26. 26.
    Rørdam, M.: Classification of certian infinite simpleC *-algebras. J. Funct. Anal. (to appear)Google Scholar
  27. 27.
    Sakai, S.: Operator algebras in dynamical systems. Cambridge: Cambridge Univ. Press, 1991Google Scholar
  28. 28.
    Zhang, S.: A property of purely infinite simpleC *-algebras. Proc. Am. Math. Soc.109, 717–720 (1990)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. Kishimoto
    • 1
  1. 1.Department of MathematicsHokkaido UniversitySapporoJapan

Personalised recommendations