Advertisement

Journal of Molecular Evolution

, Volume 27, Issue 3, pp 236–249 | Cite as

An evolutionary tree for invertebrate globin sequences

  • Morris Goodman
  • Janet Pedwaydon
  • John Czelusniak
  • Tomohiko Suzuki
  • Toshio Gotoh
  • Luc Moens
  • Fumio Shishikura
  • Daniel Walz
  • Serge Vinogradov
Article

Summary

A phylogenetic tree was constructed from 245 globin amino acid sequences. Of the six plant globins, five represented the Leguminosae and one the Ulmaceae. Among the invertebrate sequences, 7 represented the phylum Annelida, 13 represented Insecta and Crustacea of the phylum Arthropoda, and 6 represented the phylum Mollusca. Of the vertebrate globins, 4 represented the Agnatha and 209 represented the Gnathostomata. A common alignment was achieved for the 245 sequences using the parsimony principle, and a matrix of minimum mutational distances was constructed. The most parsimonious phylogenetic tree, i.e., the one having the lowest number of nucleotide substitutions that cause amino acid replacements, was obtained employing clustering and branch-swapping algorithms. Based on the available fossil record, the earliest split in the ancestral metazoan lineage was placed at 680 million years before present (Myr BP), the origin of vertebrates was placed at 510 Myr BP, and the separation of the Chondrichthyes and the Osteichthyes was placed at 425 Myr BP. Local “molecular clock” calculations were used to date the branch points on the descending branches of the various lineages within the plant and invertebrate portions of the tree. The tree divided the 245 sequences into five distinct clades that corresponded exactly to the five groups plants, annelids, arthropods, molluscs, and vertebrates. Furthermore, the maximum parsimony tree, in contrast to the unweighted pair group and distance Wagner trees, was consistent with the available fossil record and supported the hypotheses that the primitive hemoglobin of metazoans was monomeric and that the multisubunit extracellular hemoglobins found among the Annelida and the Arthropoda represent independently derived states.

Key words

Globin Invertebrate Phylogenetic tree Maximum parsimony 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baba ML, Darga LL, Goodman M, Czelusniak J (1981) Evolution of cytochrome c investigated by the maximum parsimony method. J Mol Evol 17:197–203Google Scholar
  2. Benesch R, Benesch RE (1974) Homos and heteros among the hemos. Science 185:905–908Google Scholar
  3. Bolognesi M, Coda A, Gatti G, Ascenzi P, Brunori M (1985) Crystal structure of ferricAplysia limacina myoglobin at 2.0Å resolution. J Mol Biol 183:113–115Google Scholar
  4. Bonner AG, Laursen RA (1977) The amino acid sequence of a dimeric myoglobin from the gastropod molluscBusycon canaliculatum. FEBS Lett 73:201–203Google Scholar
  5. Brown GG, Lee JS, Brisson N, Verma DPS (1984) The evolution of a plant globin gene family. J Mol Evol 21:19–32.Google Scholar
  6. Buse G, Stettens GJ, Braunitzer G, Steer W (1979) Hamoglobine. XXV Hamoglobin (Erythrocruorin) CTTIII ausChironomus thummi thummi: Primarstruktur und Beziehung zu anderer Hemproteine. Hoppe Seyler's Z Physiol Chem 360:89–97Google Scholar
  7. Cloud P, Glassner MF (1982) The Ediacaran period and system: Metazoa inherit the earth. Science 217:783–788Google Scholar
  8. Como PF, Thompson EOP (1980) Amino acid sequence of the alpha chain of the tetrameric haemoglobin of the bivalve molluscAnadara trapezia. Aust J Biol Sci 33:653–664Google Scholar
  9. Cox LR (1960) Gastropoda: general characteristics. In: Moore RC (ed) Treatise on invertebrate paleontology, part I. University of Kansas Press, Lawrence, pp 85–169Google Scholar
  10. Daniel E (1983) Subunit structure of arthropod erythrocruorin. Life Chem Rep, Suppl 1, pp 157–166Google Scholar
  11. Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668Google Scholar
  12. Feng DF, Johnson MS, Doolittle RF (1985) Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol 21:112–125Google Scholar
  13. Fisher WK, Gilbert AT, Thompson EOP (1984) Amino acid sequence of the globin IIB chain of the dimeric haemoglobin of the bivalve molluscAnadara trapezia. Austr J Biol Sci 37:191–203Google Scholar
  14. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284Google Scholar
  15. Furuta H, Kajita A (1983) Dimeric hemoglobin of the bivalve molluscAnadara broughtonii: complete amino acid sequence of the globin chain. Biochemistry 22:917–922Google Scholar
  16. Garey JR, Riggs AF (1986) The hemoglobin ofUrechis capo. J Biol Chem 261:16446–16450Google Scholar
  17. Garlick RL, Riggs A (1982) The amino acid sequence of a major polypeptide chain of earthworm hemoglobin. J. Biol Chem 257:9005–9015Google Scholar
  18. Gilbert AT, Thompson EOF (1985) Amino acid sequence of the beta chain of the tetrameric hemoglobin of the bivalve molluscAnadara trapezia. Austr J Biol Sci 38:221–236Google Scholar
  19. Goodman M (1981) Decoding the pattern of protein evolution. Prog Biophys Mol Biol 37:105–164Google Scholar
  20. Goodman M, Moore GW, Barnabas J (1974) The phylogeny of human globin genes investigated by the maximum parsimony method. J Mol Evol 3:1–48Google Scholar
  21. Goodman M, Moore GW, Matsuda G (1975) Darwinian evolution in the genealogy of hemoglobin. Nature 253:603–608Google Scholar
  22. Goodman M, Czelusniak J, Moore GW, Romero-Herrera A, Matsuda G (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst Zool 28:132–163Google Scholar
  23. Goodman M, Braunitzer G, Kleinschmidt I, Aschauer H (1983) The analysis of a protein polymorphism. Evolution of monomeric and dimeric hemoglobins ofChironomus thummi thummi. Hoppe Seyler's Z Physiol Chem 364:205–217Google Scholar
  24. Goodman M, Koop BF, Czelusniak J, Wiess ML, Slightom JL (1984) The η-globin gene: its long evolutionary history in the β-globin gene family of mammals. J Mol Biol 180:803–823Google Scholar
  25. Goodman M, Miyamoto MM, Czelusniak J (1987a) Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University Press, pp 141–176Google Scholar
  26. Goodman M, Czelusniak J, Koop BF, Tagle DA, Slightom JL (1987b) Globins: a case study in molecular phylogeny. Cold Spring Harbor Symp Quant Biol 52 (in press)Google Scholar
  27. Gotoh T, Kamada Y (1980) Subunit structure of erythrocruorin from the polychaeteTylorrhynchus heterochaetus. Biochem J (Tokyo) 87:557–562Google Scholar
  28. Gotoh T, Shishikura F, Snow JS, Ereifej KI, Vinogradov SN, Walz DA (1987) Two globin strains in the giant annelid extracellular haemoglobins. Biochem J 241:441–445Google Scholar
  29. Harland WB, Cox AV, Llewellyn PG, Pickton CAG, Smith AG, Walters R (1982) A geologic time scale. Cambridge University Press, pp 7–55Google Scholar
  30. Imamura T, Baldwin TO, Riggs A (1972) The amino acid sequence of the monomer hemoglobin component from the bloodwormGlycera dibranchiata. J Biol Chem 247:2785–2797Google Scholar
  31. Jukes TH (1963) Some recent advances in studies of the transcription of the genetic message. Adv Biol Med Phys 9:1–41Google Scholar
  32. Landsmann J, Dennis ES, Higgins TJV, Appleby CA, Kortt AA, Peacock WJ (1986) Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324:166–168Google Scholar
  33. Løvtrup S (1977) The phylogeny of Vertebrata. Wiley, LondonGoogle Scholar
  34. Mangum M (1976) Primitive respiratory adaptations. In: Newell PC (ed) Adaptation to environment: physiology of marine animals. Butterworth's, London, pp 191–278Google Scholar
  35. Mettam C (1985) Functional constraints in the evolution of the Annelida. In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 297–309Google Scholar
  36. Moens L (1982) The extracellular hemoglobin ofArtemia salina. A biochemical and ontogenetical study. Acad Anal 44:1–21Google Scholar
  37. Moens L, Van Hauwaeert ML, Geelen D, Verproten G, Van Beeumen J (1986) The amino acid sequence of a structural unit isolated from the high molecular weight globin chains ofArtemia sp. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, pp 81–84Google Scholar
  38. Moore GW (1977) Proof of the populous path algorithm for missing mutations in parsimony trees. J Theor Biol 66:95–101Google Scholar
  39. Moore GW, Goodman M (1977) Alignment statistic for identifying related protein sequences. J Mol Evol 9:121–130Google Scholar
  40. Morris SC (1985) Non-skeletalized lower invertebrate fossils: a review. In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 343–359Google Scholar
  41. Needleman SB, Wunsch CB (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 98:443–453Google Scholar
  42. Padlan EA, Love WE (1974) Three-dimensional structure of the hemoglobin from the polychaete annelidGlycera dibranchiata at 2.5Å resolution. J Biol Chem 249:309–338Google Scholar
  43. Perutz M (1979) Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem 48:327–386Google Scholar
  44. Petruzelli R, Goffredo BM, Barra D, Bossa F, Boffi A, Verzili D, Ascoli F, Chiancone E (1985) Amino acid sequence of the cooperative homodimeric hemoglobin from the molluscScapharca inaequivalvis and topology of intersubunit contacts. FEBS Lett 184:328–332Google Scholar
  45. Pojeta J, Runnegar B, Kriz J (1973)Fordilla troyensis Barrande: the oldest known pelecypod. Science 180:866–868Google Scholar
  46. Polhill RM (1981) Papilionideae. In: Polhill RM, Raven PH (eds) Advances in legume systematics, part I. Royal Botanic Gardens, Kew, pp 191–208Google Scholar
  47. Romer AS (1966) Vertebrate paleontology, ed 3. University of Chicago Press, ChicagoGoogle Scholar
  48. Royer WE, Love WE, Fenderson FF (1985) The cooperative dimeric and tetrameric chain hemoglobins are novel assemblages of myoglobin folds. Nature 316:277–280Google Scholar
  49. Schram FR (1982) The fossil record and evolution of Crustacea. In: Abele LG (ed) The biology of the Crustacea, vol 1, pp 94–147Google Scholar
  50. Shishikura F, Snow JS, Gotoh T, Vinogradov, SN, Walz DA (1987) The amino acid sequence of the monomer subunit of the extracellular hemoglobin ofLumbricus terrestris. J Biol Chem 262:3123–3131Google Scholar
  51. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438Google Scholar
  52. Specht T, Ulbrich N, Erdmann VA (1986) Nucleotide sequence of the 5S rRNA from the Annelida speciesEnchytraeus albidus. Nucleic Acids Res 14:4372Google Scholar
  53. Steigemann W, Weber E (1979) Structure of erythrocruorin in different ligand states refined at 1.4Å resolution. J Mol Biol 127:309–338Google Scholar
  54. Suzuki T (1986) Amino acid sequence of myoglobin from the molluscDolabella auricularia. J Biol Chem 261:3692–3699Google Scholar
  55. Suzuki T, Gotoh T (1986) The complete amino acid sequence of giant multisubunit hemoglobin from the polychaeteTylorrhynchus heterochaetus. J Biol Chem 261:9257–9267Google Scholar
  56. Suzuki T, Takagi T, Shikama K (1981) Amino acid sequence of myoglobin fromAplysia kurodai. Biochim Biophys Acta 669:79–83Google Scholar
  57. Suzuki T, Takagi T, Gotoh T (1982) Amino acid sequence of the smallest polypeptide chain containing heme of extracellular hemoglobin from the polychaeteTylorrhynchus heterochaetus. Biochim Biophys Acta 708:253–258Google Scholar
  58. Suzuki T, Furukohri T, Gotoh T (1985a) Subunit structure of extracellular hemoglobin from the polychaeteTylorrhynchus heterochaetus and amino acid sequence of the constituent polypeptide chain (IIC). J Biol Chem 260:3145–3154Google Scholar
  59. Suzuki T, Yasunaga H, Furukohri T, Nakamura K, Gotoh T (1985b) Amino acid sequence of polypeptide chain IIB of extracellular hemoglobin from the polychaeteTylorrhynchus heterochaetus. J Biol Chem 260:11481–11487Google Scholar
  60. Takagi T, Tobita M, Shikama K (1983) Amino acid sequence of dimeric myoglobin fromCerithidea rhizophorarum. Biochim Biophys Acta 745:32–36Google Scholar
  61. Takagi T, Iida S, Matsuoka A, Shikama K (1984)Aplysia myoglobins with an unusual amino acid sequence. J Mol Biol 180: 1179–1184Google Scholar
  62. Tasch P (1980) Paleobiology of the invertebrates. Wiley, New York, pp 441–470Google Scholar
  63. Tentori L, Vivaldi G, Carta S, Marinucci M, Massa A, Antonini E, Brunori M (1973) The amino acid sequence of myoglobin from the molluscAplysia limacina. Int J Pept Protein Res 5:182–200Google Scholar
  64. Terwilliger RC (1980) Structure of invertebrate hemoglobins. Am Zool 20:53–67Google Scholar
  65. Terwilliger RC, Terwilliger, NB (1985) Molluscan hemoglobins. Comp Biochem Physiol B Comp Biochem 81B:255–261Google Scholar
  66. Vainshtein BK (1981) The structure of leghemoglobin. In: Dodson G, Glusker CJP, Sayre D (eds) Structural studies of molecular biological interest. Oxford University Press, pp 39–43Google Scholar
  67. Vinogradov SN (1985) The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol B Comp Biochem 82B:1–15Google Scholar
  68. Vinogradov SN, Shlom JM, Kapp OH, Frossard P (1980) The dissociation of annelid extracellular hemoglobins and their quaternary structure. Comp Biochem Physiol B Comp Biochem 67B:1–16Google Scholar
  69. Vinogradov SN, Kapp OH, Ohtsuki M (1982) The extracellular haemoglobins and chlorocruorins of annelids In: Harris J (ed) Electron microscopy of proteins, vol 3. Academic Press, London, pp 135–164Google Scholar

Copyright information

© Springer-Verlag New York Inc 1988

Authors and Affiliations

  • Morris Goodman
    • 1
  • Janet Pedwaydon
    • 1
  • John Czelusniak
    • 1
  • Tomohiko Suzuki
    • 2
  • Toshio Gotoh
    • 3
  • Luc Moens
    • 4
  • Fumio Shishikura
    • 5
  • Daniel Walz
    • 5
  • Serge Vinogradov
    • 6
  1. 1.Department of AnatomyWayne State University School of MedicineDetroitUSA
  2. 2.Department of Biology, Faculty of ScienceKochi UniversityKochiJapan
  3. 3.Department of Biology, College of General EducationTokushima UniversityTokushimaJapan
  4. 4.Department of BiochemistryUniversity of AntwerpAntwerpBelgium
  5. 5.PhysiologyWayne State University School of MedicineDetroitUSA
  6. 6.BiochemistryWayne State University School of MedicineDetroitUSA

Personalised recommendations