Skip to main content
Log in

The sequence of a sea urchin muscle actin gene suggests a gene conversion with a cytoskeletal actin gene

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We report the nucleotide sequence of the single muscle actin gene of the sea urchinStrongylocentrotus purpuratus. Comparison of the protein-coding sequence of this muscle actin gene (pSpG28) with that of two linked sea urchin cytoskeletal actin genes (pSpG17 and CyIIa) reveals a region of exceptional sequence conservation from codon 61 through codon 120. Furthermore, when silent nucleotide changes are compared, the conservation of this region is still evident (7.9% silent site differences in the conserved region vs 43.3% silent site differences in the rest of the gene when pSpG28 and CyIIa are compared), indicating that the conservation is not due to particularly stringent selection on the portion of the protein encoded by this region of the genes. These observations suggest that a gene conversion has occurred between the muscle actin gene and a cytoskeletal actin gene recently in the evolution of the sea urchin genome. Gene conversion between nonallelic actin genes may thus play a role in maintaining the homogeneity of this highly conserved gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amstutz H, Munz P, Heyer WD, Leupold U, Kohli J (1985) Concerted evolution of tRNA genes: intergenic conversion among three unlinked serine tRNA genes inS. pombe. Cell 40:879–886

    Article  PubMed  Google Scholar 

  • Angerer RC, Davidson EH (1984) Molecular indices of cell lineage specification in sea urchin embryos. Science 226:1153–1160

    PubMed  Google Scholar 

  • Breathnach R, Benoist C, O'Hare K, Gannon F, Chambon P (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75:4853–4857

    PubMed  Google Scholar 

  • Cooper AD, Crain WR (1982) Complete nucleotide sequence of a sea urchin actin gene. Nucleic Acids Res 10:4081–4092

    PubMed  Google Scholar 

  • Cox KH, Angerer LM, Lee JJ, Davidson EH, Angerer RC (1986) Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis. J Mol Biol 188:159–172

    Article  PubMed  Google Scholar 

  • Crain WR, Durica DS, Cooper AD, Van Doren K, Bushman FD (1982) Structure and developmental expression of actin genes in the sea urchin. In: Pearson M, Epstein HF (eds) Muscle development: molecular and cellular control. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 97–105

    Google Scholar 

  • Durica DS, Schloss JA, Crain WR (1980) Organization of actin gene sequences in the sea urchin: molecular cloning of an intron-containing DNA sequence coding for a cytoplasmic actin. Proc Natl Acad Sci USA 77:5683–5687

    PubMed  Google Scholar 

  • Foran DR, Johnson PJ, Moore GP (1985) Evolution of two actin genes in the sea urchinStrongylocentrotus franciscanus. J Mol Evol 22:108–116

    PubMed  Google Scholar 

  • Fyrberg EA, Mahaffey JW, Bond BJ, Davison N (1983) Transcripts of the sixDrosophila actin genes accumulate in a stage- and tissue-specific manner. Cell 33:115–123

    Article  PubMed  Google Scholar 

  • Garcia R, Paz-Aliaga B, Ernst SG, Crain WR (1984) Three sea urchin actin genes show different patterns of expression: muscle specific, embryo specific and constitutive. Mol Cell Biol 4:840–845

    PubMed  Google Scholar 

  • Jackson JA, Fink GR (1981) Gene conversion between duplicated genetic elements in yeast. Nature 297:306–311

    Google Scholar 

  • Jinks-Robertson S, Petes TD (1985) High-frequency meiotic gene conversion between repeated genes on non-homologous chromosomes in yeast. Proc Natl Acad Sci USA 82:3350–3354

    PubMed  Google Scholar 

  • Klar AJS, Strathern JN (1984) Resolution of recombination intermediates generated during yeast mating type switching. Nature 360:744–747

    Article  Google Scholar 

  • Klein HL (1984) Lack of association between intrachromosomal gene conversion and reciprocal exchange. Nature 310:748–751

    Article  PubMed  Google Scholar 

  • Klein HL, Petes TD (1981) Intrachromosomal gene conversion in yeast. Nature 298:144–148

    Article  Google Scholar 

  • Lee JJ, Shott RJ, Rose SJ, Thomas TL, Britten RJ, Davidson EH (1984) Sea urchin actin gene subtypes: gene number linkage and evolution. J Mol Biol 172:149–176

    PubMed  Google Scholar 

  • Liskay RM, Stachelek JL (1983) Evidence for intrachromosomal gene conversion in cultured mouse cells. Cell 315:157–165

    Article  Google Scholar 

  • Lomedico P, Rosenthal N, Efstratiadis A, Gilbert W, Kolodner R, Tizard R (1979) The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 18:545–558

    Article  PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages Methods Enzymol 65:499–560

    PubMed  Google Scholar 

  • Mikus MD, Petes TD (1982) Recombination between genes located on nonhomologous chromosomes inSaccharomyces cerevisiae. Genetics 101:369–404

    PubMed  Google Scholar 

  • Nudel U, Zakut R, Shani M, Neuman S, Levy R, Yaffe D (1983) The nucleotide sequence of the rat cytoplasmic β-actin gene. Nucleic Acids Res 6:1759–1771

    Google Scholar 

  • Overbeek PA, Merlino GT, Peters NK, Cohn VH, Moore GP, Kleinsmith LJ (1981) Characterization of five members of the actin gene family in the sea urchin. Biochim Biophys Acta 656:195–205

    PubMed  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    Article  PubMed  Google Scholar 

  • Petes T, Fink GR (1982) Gene conversion between repeated genes. Nature 300:216–217

    Article  PubMed  Google Scholar 

  • Pollard TD, Weihing RR (1974) Actin and myosin and cell movement. CRC Crit Rev Biochem 2:1–65

    PubMed  Google Scholar 

  • Powers PA, Smithies O (1986) Short gene conversions in the human fetal globin gene region: a by-product of chromosome pairing during meiosis. Genetics 112:343–358

    PubMed  Google Scholar 

  • Ruppert S, Scherer G, Schutz G (1984) Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence. Nature 308:554–557

    Article  PubMed  Google Scholar 

  • Sanchez F, Tobin SL, Rdest U, Zulauf E, McCarthy BJ (1983) TwoDrosophila actin genes in detail: gene structure, protein structure and transcription during development. J Mol Biol 163:533–551

    Article  PubMed  Google Scholar 

  • Scheller RH, McAllister LB, Crain WR, Durica DS, Posakony JW, Thomas TL, Britten RJ, Davidson EH (1981) Organization and expression of multiple actin genes in the sea urchin. Mol Cell Biol 7:609–628

    Google Scholar 

  • Schuler MA, McOsker P, Keller EB (1983) DNA sequence of two linked actin genes of sea urchin. Mol Cell Biol 3:448–456

    PubMed  Google Scholar 

  • Shott RJ, Lee JJ, Britten RJ, Davidson EH (1984) Differential expression of the actin gene family ofStrongylocentrotus purpuratus. Dev Biol 101:295–306

    Article  PubMed  Google Scholar 

  • Shott-Akhurst RJ, Calzone FJ, Britten RJ, Davidson EH (1984) Isolation and characterization of a cell lineage-specific cytoskeletal actin gene family ofStrongylocentrotus purpuratus. In: Davidson EH, Firtel RA (eds) Molecular biology of development, Alan R Liss, New York, pp 119–128

    Google Scholar 

  • Slightom JL, Blechl AE, Smithies O (1980) Human fetal Gγ- and Aγ-globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21:627–638

    Article  PubMed  Google Scholar 

  • Stoeckert CJ, Collins FS, Weissman SM (1984) Human fetal globin DNA sequences suggest novel conversion event. Nucleic Acids Res 12:4469–4479

    PubMed  Google Scholar 

  • Vandekerckhove J, Weber K (1978) Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins. Proc Natl Acad Sci USA 75:1106–1110

    PubMed  Google Scholar 

  • Vandekerckhove J, Weber K (1984) Chordate muscle actins differ distinctly from invertebrate muscle actins. J Mol Biol 179:391–413

    Article  PubMed  Google Scholar 

  • Weiss EH, Mellor A, Golden L, Fahrner K, Simpson E, Hurst J, Flavell RA (1983) The structure of a mutant H-2 gene suggests that the generation of a polymorphism in H-2 genes may occur by gene conversion-like events. Nature 301:671–674

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crain, W.R., Boshar, M.F., Cooper, A.D. et al. The sequence of a sea urchin muscle actin gene suggests a gene conversion with a cytoskeletal actin gene. J Mol Evol 25, 37–45 (1987). https://doi.org/10.1007/BF02100039

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100039

Key words

Navigation