Communications in Mathematical Physics

, Volume 136, Issue 2, pp 399–432 | Cite as

Unbounded elements affiliated withC*-algebras and non-compact quantum groups

  • S. L. Woronowicz


The affiliation relation that allows to include unbounded elements (operators) into theC*-algebra framework is introduced, investigated and applied to the quantum group theory. The quantum deformation of (the two-fold covering of) the group of motions of Euclidean plane is constructed. A remarkable radius quantization is discovered. It is also shown that the quantumSU(1, 1) group does not exist on theC*-algebra level for real value of the deformation parameter.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Group Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akemann, C. A., Pedersen, G. K., Tomiyama, J.: Multipliers ofC *-algebras. J. Funct. Anal.13 (1973)Google Scholar
  2. 2.
    Bratteli, O., Robinson, D. W.: Operator algebras and quantum statistical mechanics. II. Berlin, Heidelberg, New York: Springer 1981Google Scholar
  3. 3.
    van Daele.: In preparationGoogle Scholar
  4. 4.
    Dixmier, J.: LesC *-algebres et leurs représentations. Paris 1964Google Scholar
  5. 5.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5 (1964)Google Scholar
  6. 6.
    Halmos, P. R.: A Hilbert space problem book. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  7. 7.
    Lazar, A. J., Taylor, D. C.: Multipliers of Pedersen's ideal. Mem. Am. Math. Soc. No. 169 (1976)Google Scholar
  8. 8.
    Manin, Yu. I.: Quantum groups and non-commutative geometry. Centre de Recherche Mathématique. Montreal 1988Google Scholar
  9. 9.
    Masuda, T. et al.: Unitary representations of the quantum groupSU q(1,1), preprints: Part I–May 1989, Part II – December 1989Google Scholar
  10. 10.
    Maurin, K.: Methods of Hilbert spaces. PWN Warszawa 1972Google Scholar
  11. 11.
    Murray, F. J., v. Neumann, Y.: On rings of operators. Ann. Math. Vol.37, No. 1 (1936)Google Scholar
  12. 12.
    Pasche, W. L.: Inner product modules overB *-algebras. Trans. Am. Math. Soc.182 (1973)Google Scholar
  13. 13.
    Phillips, N. C.: A new approach to the multipliers of Pedersen's ideal. Proceedings of the Am. Math. Soc. Vol.104 (3) (1988)Google Scholar
  14. 14.
    Podleś, P., Woronowicz, S. L.: Quantum deformation of Lorentz group. Commun. Math. Phys.130, 381–431 (1990)Google Scholar
  15. 15.
    Tomiyama, J.: Invitation toC *-algebras and topological dynamics. Singapore: World Scientific 1987Google Scholar
  16. 16.
    Vallin, J. M.:C *-algebres de Hopf etC *-algebres de Kac., Proc. Lond. Math. Soc. (3)50 (1985) No. 1Google Scholar
  17. 17.
    Vaksman, L. L., Korogodskii, L. I.: The algebra of bounded functions on the quantum group of motions of the plane andq-analogs of Bessel functions, Doklady Akademii Nauk USSR304, No. 5Google Scholar
  18. 18.
    Woronowicz, S. L.: Pseudospaces, pseudogroups, and Pontryaging duality. Proceedings of the International Conference on Mathematical Physics, Lausanne 1979. Lectures Notes in Physics, Vol. 116. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  19. 19.
    Woronowicz, S. L.: Some operators related to the quantumSL(2, ℝ) group (in preparation)Google Scholar
  20. 20.
    Woronowicz, S. L., Napiórkowski, K.: Operator theory in theC *-algebra framework (in preparation)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. L. Woronowicz
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations