Skip to main content
Log in

The eye lens crystallins: Ambiguity as evolutionary strategy

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Comparative studies of the different families of lens-specific proteins of the vertebrates, the crystallins, and their genes reveal several interesting evolutionary features. The origin of α-crystallin can be traced back to the small heat shock proteins, while the superfamily of βγ-crystallins shows structural similarities with a bacterial spore coat protein. The crystallins display a great diversity within and between species, as well as during development. Ambiguous transcription, mRNA-processing, and translation contribute to this diversity of the crystallins and their expression. These mechanisms include the occurrence of atypical poly-A addition signals, alternative splicing, and the use of two initiation codons on a single mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bloemendal H (ed) (1981) Molecular and cellular biology of the eye lens. John Wiley and Sons, New York

    Google Scholar 

  • Blundell T, Lindley P, Miller L, Moss D, Slingsby C, Tickle I, Turnell B, Wistow G (1981) The molecular structure and stability of the eye lens: X-ray analysis of γ-crystallin II. Nature 289:771–777

    PubMed  Google Scholar 

  • Breitbart RE, Nadal-Ginard B (1986) Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies divergence. J Mol Biol 188:313–324

    Article  PubMed  Google Scholar 

  • Breitman ML, Lok S, Wistow G, Piatigorsky J, Treton JA, Gold RJM, Tsui L-C (1984) γ-Crystallin family of the mouse lens: structural and evolutionary relationships. Proc Natl Acad Sci USA 81:7762–7766

    PubMed  Google Scholar 

  • Chepelinksy AB, Piatigorsky J (1986) Activator sequences of the murine αA-crystallin gene. Invest Ophthalmol Vis Sci 27 (suppl) p 214

    PubMed  Google Scholar 

  • Chiou S-H (1984) Physicochemical characterization of a crystallin from the souid lens and its comparison with vertebrate lens crystallins. J Biochem 95:75–82

    PubMed  Google Scholar 

  • Chiou S-H, Chang W-C, Kuo J, Pan F-M, Lo T-B (1986) Biochemical comparison of ε-crytallins from duck and frog eye lenses. FEBS Letters 196:219–222

    Article  PubMed  Google Scholar 

  • Clayton RM, Jennyy JC, Bower DJ, Errington LH (1986) The presence of extralenticular crystallins and its relationship with transdifferentiation to lens. In: Okada TS (ed) Current topics in developmental biology. vol 20, Commitment and instability in cell differentiation. Academic Press, Orlando, pp 137–152

    Google Scholar 

  • de Jong WW (1981) Evolution of lens and crystallins. In: Bloemendal H (ed) Molecular and cellular biology of the eye lens. John Wiley and Sons, New York, pp 221–278

    Google Scholar 

  • de Jong WW, Cohen LH, Leunissen JAM, Zweers A (1980) Internally elongated rodent α-crystallin A chain: resulting from incomplete RNA splicing. Biochem Biophys Res Commun 96:648–655

    Article  PubMed  Google Scholar 

  • Delaye M, Tardieu A (1983) Shor-range order of cystallin protein accounts for eye lens transparency. Nature 302:415–417

    Article  PubMed  Google Scholar 

  • den Dunnen JT, Jongbloed RJE, Geurts van Kessel AHM, Schoenmakers JGG (1985) Human lens γ-crystallin sequences are located in the p12-qter region of chromosome 2. Hum Genet 70:217–221

    Article  PubMed  Google Scholar 

  • den Dunnen JT, Moormann RJM, Lubsen NH, Schoenmakers JGG (1986a) Intron insertions and deletions in the βγ-crystallin gene family: the rat βB1 gene. Proc Natl Acad Sci USA 83:2855–2859

    PubMed  Google Scholar 

  • den Dunnen JT, Moormann RJM, Lubsen NH, Schoenmakers JGG (1986b) Concerted and divergent evolution within the rat γ-crystallin gene family. J Mol Biol 189:37–46

    Article  PubMed  Google Scholar 

  • Dodemont H, Groenen M, Jansen L, Schoenmakers J, Bloemendal H (1985) Comparison of the crystallin mRNA populations from rat, calf and duck lens. Evidence for a longer αA2-mRNA and two distinct αB2-mRNAs in the birds. Biochim Biophys Acta 824:284–294

    PubMed  Google Scholar 

  • Driessen HPC, Herbrink P, Bloemendal H, de Jong WW (1981) Primary structure of the bovine β-crystallin Bp chain. Internal duplication and homology with γ-crystallin. Eur J Biochem 12:83–91

    Google Scholar 

  • Gause GG Jr, Tomarev SI, Zinovieva RD, Arutyunyan KG, Dolgilevich SM (1986) Crystallin gene sequences of the frogRana temporaria. In: Duncan G (ed) The lens: transparancy and cataract. Topics in aging research in Europe, vol 6, EUR-AGE, Rijswijk, pp 171–179

    Google Scholar 

  • Goodman M (1981) Decoding the pattern of protein evolution. Prog Biophys Molec Biol 37:105–164

    Article  Google Scholar 

  • Gorin MB, Horwitz J (1984) Cloning and characterization of a cow beta crystallin cDNA. Curr Eye Res 3:939–948

    PubMed  Google Scholar 

  • Harding JJ, Crabbe MJC (1984) The lens: development, proteins, metabolism and cataract. In: Davson H (ed) The eye, 3rd ed. Academic Press, London, New York, pp 207–492

    Google Scholar 

  • Hayashi S, Kondoh H, Yasuda K, Soma G-I, Ikawa Y, Okada TS (1985) Tissue-specific regulation of a chicken δ-crystallin gene in mouse cells: involvement of the 5′ end region. EMBO J 4:2201–2207

    PubMed  Google Scholar 

  • Heitmancik JF, Thompson MA, Wistow G, Piatigorsky J (1986) cDNA and deduced protein sequence for the βB1-crystallin polypeptide of the chicken lens. Conservation of the PAPA sequence. J Biol Chem 261:982–987

    PubMed  Google Scholar 

  • Hickey E, Brandon SE, Potter R, Stein G, Weber LA (1986) Sequence and organization of genes encoding the human 27 kDa heat shock protein. Nucl Acids Res 14:4127–4145

    PubMed  Google Scholar 

  • Hogg D, Tsui L-C, Gorin M, Breitman ML (1986) Characterization of the human β-crystallin gene HuβA3/A1 reveals ancestral relationships among the βγ-crystallin superfamily. J Biol Chem 261:12410–12427

    Google Scholar 

  • Ingolia TD, Craig EA (1982) Four smallDrosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc Natl Acad Sci USA 79:2360–2364

    PubMed  Google Scholar 

  • King CR, Piatigorsky J (1983) Alternative RNA splicing of the murine αA-crystallin gene: protein-coding information within an intron. Cell 32:707–712

    Article  PubMed  Google Scholar 

  • King CR, Shinohara T, Piatigorsky J (1982) αA-crystallin messenger RNA of the mouse lens: More non-coding than coding sequences. Science 215:985–987

    PubMed  Google Scholar 

  • Kondoh H, Yasuda K, Okada TS (1983) Tissue-specific expression of a cloned chicken δ-crystallin gene in mouse cells. Nature 301:440–442

    Article  PubMed  Google Scholar 

  • Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  PubMed  Google Scholar 

  • Lok S, Breitman ML, Chepelinsky AB, Piatigorsky J, Gold RJM, Tsui L-C (1985) Lens-specific promoter activity of a mouse γ-crystallin gene. Mol Cell Biol 5:2221–2230

    PubMed  Google Scholar 

  • Maisel H (ed) (1985) The ocular lens. Marcel Dekker, New York

    Google Scholar 

  • Meakin SO, Breitman ML, Tsui T-C (1985) Structural and evolutionary relationships among five members of the human γ-crystallin gene family. Mol Cell Biol 5:1408–1414

    PubMed  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nickerson JM, Wawrousek EF, Hawkins JW, Wakil AS, Wistow GJ, Thomas G, Norman BL, Piatigorsky J (1985) The complete sequence of the chicken δ1 crystallin gene and its 5′ flanking region. J Biol Chem 260:9100–9105

    PubMed  Google Scholar 

  • Nickerson JM, Wawrousek EF, Borras T, Hawskins JW, Norman BL, Filpula DR, Nagle JW, Ally AH, Piatigorsky J (1986) Sequence of the chicken δ2 crystallin gene and its intergenic spacer. Extreme homology with the δ1 crystallin gene. J Biol Chem 261:552–557

    PubMed  Google Scholar 

  • Okazaki K, Yasuda K, Kondoh H, Okada TS (1985) DNA sequences responsible for tissue-specific expression of a chicken α-crystallin gene in mouse lens cells. EMBO J 4:2589–2595

    PubMed  Google Scholar 

  • Overbeek PA, Chepelinsky AB, Khillan JS, Piatigorsky J, Westphal H (1985) Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine αA-crystallin promoter in transgenic mice. Proc Natl Acad Sci USA 82:7815–7819

    PubMed  Google Scholar 

  • Peterson CA, Piatigorsky J (1986) Preferential conservation of the globular domains of the βA3/A1-crystallin polypetide of the chicken eye lens. Gene 45:139–147

    Article  PubMed  Google Scholar 

  • Piatigorsky J (1981) Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation. 19:134–153

    PubMed  Google Scholar 

  • Piatigorsky J (1984) Delta crystallins and their nucleic acids. Mol Cell Biochem 59:33–56

    Article  PubMed  Google Scholar 

  • Piatigorsky J (1987) Gene expression and genetic engineering in the lens. Invest Ophthalmol Vis Sci 28:9–28

    PubMed  Google Scholar 

  • Quax-Jeuken Y, Janssen C, Quax W, van den Heuvel R, Bloemendal H (1984) Bovine β-crystallin complementary DNA clones: alternating proline/alanine sequence of βB1 subunit originates from a repetitive DNA sequence. J Mol Biol 180:457–472

    Article  PubMed  Google Scholar 

  • Quax-Jeuken Y, Driessen H, Leunissen J, Quax W, de Jong WW, Bloemendal H (1985a) βs-Crystallin: structure and evolution of a distinct member of the βγ-superfamily. EMBO J 4:2597–2602

    PubMed  Google Scholar 

  • Quax-Jeuken Y, Quax W, van Rens G, Khan PM, Bloemendal H (1985b) Complete structure of the αB-crystallin gene: conservation of the exon-intron distribution in the two nonlineked α-crystallin genes. Proc Natl Acad Sci USA 82:5819–5823

    PubMed  Google Scholar 

  • Russnak RH, Jones D, Candido EPM (1983) Cloning and analysis of cDNA sequences coding for two 16 kilodalton heat shock proteins (hsps) inCaenorhabditis elegans: homology with the small hsps ofDrosophila. Nucl Acids Res 11:3187–3205

    PubMed  Google Scholar 

  • Schoenmakers JGG, Aarts HJM, van Leen RJ, den Dunnen JT, Lubsen NH (1986) Structure and expression of rat and human crystallin genes. In: Iwata S (ed) Proc Internat Soc Eye Res, vol. IV, Nagoya, pp44

  • Shiloh Y, Donion T, Bruns G, Breitman ML, Tsui L-C (1986) Assignment of the human γ-crystallin gene cluster (CRYG) to the long arm of chromosome 2, region q33-36. Human Genet 73:17–19

    Article  Google Scholar 

  • Siezen RJ, Shaw DC (1982) Physiocochemical characterization of lens proteins of the squidNototodarus gouldi and comparison with vertebrate crystallins. Biochim Biophys Acta 704:304–320

    PubMed  Google Scholar 

  • Siezen RJ, Fisch MR, Slingsby C, Benedek GB (1985) Opacification of γ-crystallin solutions from calf lens in relation to cold cataract formation. Proc Natl Acad Sci USA 82:1701–1705

    PubMed  Google Scholar 

  • Skow LC, Donner ME (1985) The locus encoding αA-crystallin is closely linked to H-2K on mouse chromosome 17. Genetics 110:723–732

    PubMed  Google Scholar 

  • Skow LC, Kunz HW, Gill TJ III (1985) Linkage of the locus encoding the A chain of α-crystallin (Acry-l) to the major histocompatibility complex in the rat. Immunogenetics 22:291–294

    Article  PubMed  Google Scholar 

  • Slingsby C (1985) Structural variation in lens crystallins. Trends Biochem Sci 10:281–284

    Article  Google Scholar 

  • Sparkes RS, Mohandes T, Heinzmann C, Gorin MB, Zollman S, Horwitz J (1986) Assignment of a human beta crystallin gene to 17 cen-q23*. Hum Genet 74:133–136

    Article  PubMed  Google Scholar 

  • Spector A, Chiesa R, Sredy J, Garner W (1985) cAMP-dependent phosphorylation of bovine lens α-crystallin. Proc Natl Acad Sci USA 82:4712–4716

    PubMed  Google Scholar 

  • Stapel SO, de Jong WW (1983) Lamprey 48-kDa lens protein represents a novel class of crystallins. FEBS Letters 162:305–309

    Article  PubMed  Google Scholar 

  • Stapel SO, Zweers A, Dodemont HJ, de Jong WW (1985) ε-Crystallin, a novel avian and reptilian eye lens protein Eur J Biochem 147:129–136

    Article  PubMed  Google Scholar 

  • Summers L, Slingsby C, White H, Narebor M, Moss D, Miller L, Mahadevan D, Lindley P, Driessen H, Blundell T (1984) The molecular structures and interactions of bovine and human γ-crystallins. In: Nugent J, Whelan J (eds) Human cataract formation, CIBA Foundation Symposium 106, Pitman, London, pp 219–236

    Google Scholar 

  • Tomarev SI, Zinovieva RD, Dolgilevich SM, Krayev AS, Skryabin KG, Gause Jr, GG (1983) The absence of the long 3′-non-translated region in mRNA coding for eye lens αA2-crystallin of the frog (Rana temporaria). FEBS Letters 162:47–51

    Article  PubMed  Google Scholar 

  • van den Heuvel R, Hendriks W, Quax W, Bloemendal H (1985) Complete structure of the hamster αA crystallin gene. Reflection of an evolutionary history by means of exon shuffling. J Mol Biol 185:273–284

    Article  PubMed  Google Scholar 

  • van Leen RW, Kastrop PMM, van Roozendaal KEP and Schoenmakers JGG (1986) Sequence divergence and selection of cap sites in the rat γ-crystallin gene family. Eur J Biochem 157:203–208

    Article  PubMed  Google Scholar 

  • Voorter CEM, Mulders JWM, Bloemendal H, de Jong WW (1986) Some aspects of the phosphorylation of α-crystallin. Eur J Biochem 160:203–210

    Article  PubMed  Google Scholar 

  • Williams LA, Ding L, Horwitz J, Piatigorsky J (1985) τ-Crystallin from the turtle lens: purification and partial characterization. Exp Eye Res 40:741–749

    Article  PubMed  Google Scholar 

  • Wistow G (1985) Domain structure and evolution in α-crystallins and small heat shock proteins. FEBS Letters 181:1–6

    Article  PubMed  Google Scholar 

  • Wistow G, Summers L, Blundell T (1985)Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lens βγ-crystallins. Nature 316:771–773

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, W.W., Hendriks, W. The eye lens crystallins: Ambiguity as evolutionary strategy. J Mol Evol 24, 121–129 (1986). https://doi.org/10.1007/BF02099960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099960

Key words

Navigation