Journal of Molecular Evolution

, Volume 24, Issue 1–2, pp 53–60 | Cite as

Concerted evolution of sequence repeats inDrosophila mitochondrial DNA

  • Michel Solignac
  • Monique Monerot
  • Jean-Claude Mounolou


In the eightDrosophila species of themelanogaster subgroup, the mitochondrial DNA (mtDNA) contains an A+T-rich region in which replication originates. The length of this region, in contrast with that of the coding part of the genome, varies extensively among these species. The A+T-rich region ranges from about 1kbp inD. yakuba, D. teissieri, D. erecta, andD. orena to 5 kbp inD. melanogaster, D. simulans, D. mauritiana, andD. sechellia. The difference in size is due in part to the amplification, in the species with long genomes, of a 470-bp sequence that is present only once in each of the four species with short genomes.

Usually three to six repeats of this sequence occur in direct tandem repetition in the species with long genomes. The sequence is characterized by the relative positions of the Hpa I and Acc I cleavage sites. Comparative study of the genomes found in the species with long mtDNA molecules reveals relative homogeneity of the repeat units within a given genome, which contrasts with the variability found among the repeats of different genomes. This result is suggestive of a process of a concerted evolution.

The examination of heteroplasmic flies of three species (D. simulans, D. mauritiana, andD. sechellia) has shed light on this process. In most cases the molecular types of mtDNA present in a heteroplasmic individual differ by one repeat unit. Addition or deletion of this sequence appears to be the original mutational event generating transient heteroplasmy. Cycles of addition or deletion may consequently maintain the intragenomic homogeneity of the repeats.

Finally, we have analyzed an exceptional isofemale line in which three molecular lengths of mtDNA are found (molecules with four, five, and six repeats, respectively). Individual offspring of this line carry from one to three of the molecular types, in all combinations. This indicates that the remodeling of the mitochondrial genome occurs through a mechanism that is at present unknown, but that is site specific and rather frequent.

Key words

Drosophila melanogaster subgroup Mitochondrial DNA A+T-rich region Length variation Concerted evolution Triplasmy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, Massachusetts, p 38Google Scholar
  2. Baba-Aïssa F, Solignac M (1984) La plupart des populations deDrosophila simulans ont probablement pour ancêtre une femelle unique dans un passé récent. CR Séances Acad Sci 299:289–292Google Scholar
  3. Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RR (ed) Molecular evolutionary genetics. Plenum, New York, p 95Google Scholar
  4. Brown GG, Desrosiers LJ (1983) Rat mitochondrial DNA polymorphism: sequence analysis of a hypervariable site for insertions/deletions. Nucleic Acids Res 11:6699–6708PubMedGoogle Scholar
  5. Bultmann H, Laird CD (1973) Mitochondrial DNA fromDrosophila melanogaster. Biochim Biophys Acta 299:196–209PubMedGoogle Scholar
  6. Cann RL, Wilson AC (1983) Length mutations in human mitochondrial DNA. Genetics 104:699–711PubMedGoogle Scholar
  7. Clary D, Wolstenholme DR (1985) The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271PubMedGoogle Scholar
  8. Densmore LD, Wright JW, Brown WM (1985) Length variation and heteroplasmy are frequent in mitochondial DNA from parthenogenetic and bisexual lizards (genusCnemidophorus). Genetics 110:689–707PubMedGoogle Scholar
  9. Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117CrossRefPubMedGoogle Scholar
  10. Fauron CMR, Wolstenholme DR (1976) Structural heterogeneity of mitochondrial DNA molecules within the genusDrosophila. Proc Natl Acad Sci USA 73:3623–3627PubMedGoogle Scholar
  11. Fauron CMR, Wolstenholme DR (1980a) Extensive diversity amongDrosophila species with respect to nucleotide sequences within the adenine+thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res 8:2439–2452PubMedGoogle Scholar
  12. Fauron CMR, Wolstenholme DR (1980b) Intraspecific diversity of nucleotide sequences within the adenine+thymidinerich region of mitochondrial DNA molecules ofDrosophila mauritiana, Drosophila melanogaster andDrosophila simulans. Nucleic Acids Res 8:5391–5410PubMedGoogle Scholar
  13. Goddard JM, Wolstenholme DR (1978) Origin and direction of replication in mitochondrial DNA molecules fromDrosophila melanogaster. Proc Natl Acad Sci USA 75:3886–3890PubMedGoogle Scholar
  14. Goddard JM, Wolstenholme DR (1980) Origin and direction of replication in mitochondrial DNA molecules from the genusDrosophila. Nucleic Acids Res 8:741–757PubMedGoogle Scholar
  15. Goldring ES, Peacock WJ (1977) Intramolecular heterogeneity of mitochondrial DNA ofDrosophila melanogaster. J Cell Biol 73:279–286CrossRefPubMedGoogle Scholar
  16. Greenberg GD, Newbold JE, Sugino A (1983) Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 21:33–49CrossRefPubMedGoogle Scholar
  17. Hale LR, Beckenbach AT (1985) Mitochondrial DNA variation inDrosophila pseudoobscura and related species in Pacific Northwest populations. Can J Genet Cytol 27:357–364PubMedGoogle Scholar
  18. Harrison RG, Rand DM, Wheeler WC (1985) Mitochondrial DNA size variation within individual crickets. Science 228: 1446–1448Google Scholar
  19. Hauswirth WW, Van De Walle MJ, Laipis PJ, Olivo PD (1984) Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell 37:1001–1007CrossRefPubMedGoogle Scholar
  20. Merten SH, Pardue ML (1981) Mitochondrial DNA inDrosophila. An analysis of genome organization and transcription inDrosophila melanogaster andDrosophila virilis. J Mol Biol 153:1–21PubMedGoogle Scholar
  21. Monnerot M, Mounolou JC, Solignac M (1984) Intra-individual length heterogeneity ofRana esculenta mitochondrial DNA. Biol Cell 52:213–218PubMedGoogle Scholar
  22. Mounolou JC, Monnerot M, Solignac M (1984) Génétique mitochondriale de la Drosophile. In: Ben Hamida F (ed) 4ème Ecole Franco-Africaine de biologie moléculaire. Agence de Coopération Culturelle et Technique, Paris, p 183Google Scholar
  23. Ohta T (1983) On the evolution of multigene families. Theor Popul Biol 23:216–240CrossRefPubMedGoogle Scholar
  24. Peacock MJ, Brutlag D, Goldring E, Appels R, Hinton CW, Lindsley DL (1973) The organization of highly repeated DNA sequences inDrosophila melanogaster chromosomes. Cold Spring Harbor Symp Quant Biol 38:405–416Google Scholar
  25. Polan ML, Friedman S, Gall JG, Gehring W (1973) Isolation and characterization of mitochondrial DNA fromDrosophila melanogaster. J Cell Biol 56:580–589CrossRefPubMedGoogle Scholar
  26. Potter DA, Fostel JM, Berninger M, Pardue ML, Cech T (1980) DNA-protein interactions in theDrosophila melanogaster mitochondrial genome as deduced from trimethylpsoralen crosslinking patterns. Proc Natl Acad Sci USA 77:4118–4122PubMedGoogle Scholar
  27. Reilly JG, Thomas CA Jr (1980) Length polymorphism, restriction site variation and maternal inheritance of mitochondrial DNA ofDrosophila melanogaster. Plasmid 3:109–115CrossRefPubMedGoogle Scholar
  28. Shah DM, Langley CH (1979) Electron microscope heteroduplex study ofDrosophila mitochondrial DNAs: evolution of A+T rich region. Plasmid 2:69–78CrossRefPubMedGoogle Scholar
  29. Solignac M, Monnerot M (1986) Race formation, speciation and introgression withinDrosophila simulans, D. mauritiana, andD. sechellia inferred from mitochondrial DNA analysis. Evolution 40:531–539Google Scholar
  30. Solignac M, Monnerot M, Mounolou JC (1983) Mitochondrial DNA heteroplasmy inDrosophila mauritiana. Proc Natl Acad Sci USA 80:6942–6946PubMedGoogle Scholar
  31. Solignac M, Génermont J, Monnerot M, Mounolou JC (1984) Genetics of mitochondria inDrosophila: mtDNA inheritance in heteroplasmic strains ofD. Mauritiana. Mol Gen Genet 197:183–188CrossRefGoogle Scholar
  32. Solignac M, Monnerot M, Mounolou JC (1986) Mitochondrial DNA evolution in themelanogaster species subgroup ofDrosophila. J Mol Evol 23:31–40PubMedGoogle Scholar
  33. Sugino A (1980) Cloning of the replication origin fromDrosophila virilis mitochondrial DNA. Biochem Biophys Res Commun 91:1321–1329CrossRefGoogle Scholar
  34. Upholt WB, Dawid IB (1977) Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D-loop region. Cell 11:571–583CrossRefPubMedGoogle Scholar
  35. Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the chain of hemoglobin. Proc Natl Acad Sci USA 77:2158–2162PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Michel Solignac
    • 1
  • Monique Monerot
    • 2
  • Jean-Claude Mounolou
    • 2
  1. 1.Laboratoire de Biologie et Génétique EvolutivesCentre National de la Recherche ScientifiqueGif-sur-YvetteFrance
  2. 2.Laboratoire de Biologie GénéraleUniversité Paris XIOrsay CedexFrance

Personalised recommendations