Abstract
The Newtonian equations of motion, and Newton's law of gravitation can be obtained by a limit\(\lambda = \frac{1}{{c^2 }} \to 0\) of Einstein's equations. For a sufficiently small constant Λ the existence of a set of solutions (0≤λ≤Λ) of Einstein's equations of a stationary, axisymmetric star is proven. This existence is proven in weighted Sobolev spaces with the implicit function theorem. Since the value of the causality constant λ depends only on the units used to measure the velocity, the existence of a solution for any small λ is physically interesting.
Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. New York, San Francisco, London: Academic Press 1975
Cantor, M.: Spaces of Functions with Asymptotic Conditions on ℝn. Indiana Univ. Math. J.24(9), 897–902 (1975)
Cantor, M.: Elliptic Operators and the Decomposition of Tensorfields. Bull. Am. Math. Soc.5, 235–262 (1981)
Carleman, T.: Über eine isoperimetrische Aufgabe und ihre physikalischen Anwendungen. Math. Z.3, 1–7 (1919)
Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. New Haven, CT: Yale University Press, 1969
Deimling, K.: Nonlinear Functional Analaysis, Chap. 15, Berlin, Heidelberg, New York: Springer 1985
Ehlers, J.: Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie. In: Nitsch, J., Pfarr, J., Stachow, E.-W., (eds.), Grundlagenprobleme der modernen Physik, 65–84, Mannheim, Wien, Zürich: Bibliographisches Institut 1981
Ehlers, J.: On Limit Relations Between, And Approximative Explanations Of, Physical Theories. In: Barcan Marcus, R., Dorn, G.J.W., Weingartner, P. (eds.) Logic, Methodology and Philosophy of Science VII, 387–403, Amsterdam: North-Holland 1986
Heilig, U.: On Lichtenstein's Analysis of Rotating Newtonian Stars. To appear in Annales de L'Institut Henri Poincaré
Kreyszig, E.: Introductory Functional Analysis With Applications. Chap. 8, New York: John Wiley 1978
Lichtenstein, L.: Über eine isoperimetrische Aufgabe der mathematischen Physik. Math. Z.3, 8–10 (1919)
Lichtenstein, L.: Gleichgewichtsfiguren rotierender Flüssigkeiten. Berlin: Springer 1933
Lindblom, L.: Fundamental Properties of Equilibrium Stellar Models. Ph.D. thesis, University of Maryland 1978
Lottermoser, M.: A Convergent Post-Newtonian Approximtion for the Constraint Equations in General Relativity. Annales de L'Institut Henri Poincaré57, 279–317 (1992)
McOwen, R.C.: The Behaviour of the Laplacian on Weighted Sobolev Spaces. Comm. Pure Appl. Math.32, 783–795 (1979)
Zeidler, E.: Vorlesung über nichtlineare Funktionsanalysis I. Chap. 4, Teubner Texte für Mathematik, 1975.
Author information
Authors and Affiliations
Additional information
Communicated by S.-T. Yau
Rights and permissions
About this article
Cite this article
Heilig, U. On the existence of rotating stars in general relativity. Commun.Math. Phys. 166, 457–493 (1995). https://doi.org/10.1007/BF02099884
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02099884