Skip to main content
Log in

On the existence of rotating stars in general relativity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Newtonian equations of motion, and Newton's law of gravitation can be obtained by a limit\(\lambda = \frac{1}{{c^2 }} \to 0\) of Einstein's equations. For a sufficiently small constant Λ the existence of a set of solutions (0≤λ≤Λ) of Einstein's equations of a stationary, axisymmetric star is proven. This existence is proven in weighted Sobolev spaces with the implicit function theorem. Since the value of the causality constant λ depends only on the units used to measure the velocity, the existence of a solution for any small λ is physically interesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. New York, San Francisco, London: Academic Press 1975

    Google Scholar 

  2. Cantor, M.: Spaces of Functions with Asymptotic Conditions on ℝn. Indiana Univ. Math. J.24(9), 897–902 (1975)

    Google Scholar 

  3. Cantor, M.: Elliptic Operators and the Decomposition of Tensorfields. Bull. Am. Math. Soc.5, 235–262 (1981)

    Google Scholar 

  4. Carleman, T.: Über eine isoperimetrische Aufgabe und ihre physikalischen Anwendungen. Math. Z.3, 1–7 (1919)

    Google Scholar 

  5. Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. New Haven, CT: Yale University Press, 1969

    Google Scholar 

  6. Deimling, K.: Nonlinear Functional Analaysis, Chap. 15, Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  7. Ehlers, J.: Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie. In: Nitsch, J., Pfarr, J., Stachow, E.-W., (eds.), Grundlagenprobleme der modernen Physik, 65–84, Mannheim, Wien, Zürich: Bibliographisches Institut 1981

    Google Scholar 

  8. Ehlers, J.: On Limit Relations Between, And Approximative Explanations Of, Physical Theories. In: Barcan Marcus, R., Dorn, G.J.W., Weingartner, P. (eds.) Logic, Methodology and Philosophy of Science VII, 387–403, Amsterdam: North-Holland 1986

    Google Scholar 

  9. Heilig, U.: On Lichtenstein's Analysis of Rotating Newtonian Stars. To appear in Annales de L'Institut Henri Poincaré

  10. Kreyszig, E.: Introductory Functional Analysis With Applications. Chap. 8, New York: John Wiley 1978

    Google Scholar 

  11. Lichtenstein, L.: Über eine isoperimetrische Aufgabe der mathematischen Physik. Math. Z.3, 8–10 (1919)

    Google Scholar 

  12. Lichtenstein, L.: Gleichgewichtsfiguren rotierender Flüssigkeiten. Berlin: Springer 1933

    Google Scholar 

  13. Lindblom, L.: Fundamental Properties of Equilibrium Stellar Models. Ph.D. thesis, University of Maryland 1978

  14. Lottermoser, M.: A Convergent Post-Newtonian Approximtion for the Constraint Equations in General Relativity. Annales de L'Institut Henri Poincaré57, 279–317 (1992)

    Google Scholar 

  15. McOwen, R.C.: The Behaviour of the Laplacian on Weighted Sobolev Spaces. Comm. Pure Appl. Math.32, 783–795 (1979)

    Google Scholar 

  16. Zeidler, E.: Vorlesung über nichtlineare Funktionsanalysis I. Chap. 4, Teubner Texte für Mathematik, 1975.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heilig, U. On the existence of rotating stars in general relativity. Commun.Math. Phys. 166, 457–493 (1995). https://doi.org/10.1007/BF02099884

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099884

Keywords

Navigation