Skip to main content
Log in

Toeplitz quantization of Kähler manifolds anggl(N), N→∞ limits

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For general compact Kähler manifolds it is shown that both Toeplitz quantization and geometric quantization lead to a well-defined (by operator norm estimates) classical limit. This generalizes earlier results of teh authors and Klimek and Lesniewski obtained for the tours and higher genus Riemann surfaces, respectively. We thereby arrive at an approximation of the Poisson algebra by a sequence of finitedimensional matrix algebrasgl(N), N→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol'd, V.I.: Mathematical methods of classical mechanics. Berin, Heidelberg, New York: Springer 1980

    Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Liochnerowicz, A., Sternheimer, D.: Deformation theory and quantization. Ann. Phys.111, 61–110 (part I), 111–151 (part II) (1978)

    Google Scholar 

  3. Berezin, F.A.: Quantizatiion. Math. USSR Izv.8, no. 5, 1109–1165 (1974); Quantization in complex symmetric spaces. Math. USSR Izv.9, no. 2, 341–379 (1975); General concept of Quantization. Commun. Math. Phys.40, 153–174 (1975)

    Google Scholar 

  4. Bordemann, M., Hoppe, J.: The dynamics oof relativistic membranes. I: Reduction to 2-dimensional fluid dynamics. To appear in Phys. Lett. B

  5. Bordemann, M., Hoppe, J., Schaller, P., Sichlichenmaier, M.:gl(∞) and geometric quantization. Commun. Math. Phys.138, 209–244 (1991).

    Google Scholar 

  6. Bordemann, M., Meinrenken, E., Römer, H.: Total space quantization of Kähler manifolds. Reprint Appril 1993, Freiburg THEP 93/5

  7. Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators. Ann. Math. Studies, Nr. 99, Princeton, NJ: Princeton Universeity Press 1981

    Google Scholar 

  8. Boutet de Monvel, Sjöstrand, J.: Sur la singularité des noyaux de Bergma et de Szegö. Astérisque34–34, 123–164 (1976)

    Google Scholar 

  9. Cahen, M., Gutt, S., Rawnsley, J.H.: Quantization of Kähler manifolds I: Geometric interpretation of Berezin's quantization. JGP7, no. 1, 45–65 (1990); Quantization of Kähler manifolds II. Preprint (1991)

    Google Scholar 

  10. Calabi, E.: Isometric imbedding of compelx manifolds. Ann. Math.58, 1–23 (1953)

    Google Scholar 

  11. DeWilde, M., Lecomte, P.B.A.: Existence of star products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys.7, 487–496 (1983)

    Google Scholar 

  12. Dixmier, J.C.:C *-Aalgebras. Amsterdam, New York, Oxford: North-Holland 1977

    Google Scholar 

  13. Ebin, D.G., Mardsen, J.: Group of diffeomorphisms and the motion of an incompressible fluid. Ann. Math.92, 102–163 (1970)

    Google Scholar 

  14. Fairlie, D., Fletscher, P., Zachos, C.N.: Trigonometric structure constants for new infinite algebras. Phys. Lett. B218, 203 (1989)

    Google Scholar 

  15. Farkas, H.M., Kra, I.: Rieman surfaces. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  16. Gilkey, P.: Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Wilmington: Publish or Perish 1984.

    Google Scholar 

  17. Griffiths, Ph., Harris, J.: Principles of algebraic geometry. New York: John Wiley 1978

    Google Scholar 

  18. Guillemin, V.: Some classical theorems in spectral theory revisited. Seminars on singularities of solutions of linear partial differential equations. Ann. Math. Studies, Nr. 91, Hörmader, L., (ed.) Princeton, NJ: Princeton University Press 1979, pp. 219–259

    Google Scholar 

  19. Guillemin, V.: Symplectic spinors and partial differential equations. Géométrie symplectic et physique mathématique (Aix en Provence (1974), Coll. Int. CNRS 237, pp. 217–252

  20. Guillemin, V., Uribe, A.: Circular symmetry and the trace formula. Invent. Math.96, 385–423 (1989)

    Google Scholar 

  21. Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1971)

    Google Scholar 

  22. Hörmander, L.: The analysis of linear partial differential operators. Vol. I–IV, Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  23. Hoppe, J.: Quantum theory of a relativistic surface ... MIT PhD Thesis 1982, Elem. Part. Res. J. (Kyoto)83 (1989/1990), no. 3

  24. Klimek, S., Kesniewski A.: Quantum Rieman surfaces: I. Teh unit disc. Commun. Math. Phys.146, 103–122 (1992); Quantum Riemann Surfaces: II. The discrete series. Lett. Math. Phys.24, 125–139 (1992)

    Google Scholar 

  25. Meinrenken, E.: Semiklassische Nähreungen und mikrolokale Analysis. Dissertation (in preparation), Fak. für Physik, University of Freiburg

  26. Mumford, D.: Algebraic geometry I. Complex projective varieties. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  27. Miumford, D.: Curves and their Jacobians. Ann. Arbor: The University of Michigan Press 1976

    Google Scholar 

  28. Rawnsley, J.H.: Coherent states and Kähleer manifolds. Quant. J. Math. Oxford28, no. 2, 403–415 (1977)

    Google Scholar 

  29. Schlichemaier, M.: An introduction to Rieman surfaces, algebraic cures and moduli spaces. Lecture Notes in Physics322. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  30. Simon, B.: The classical limit of quantum partition functions. Commun. Math. Phys.71, 247–276 (1980)

    Google Scholar 

  31. Tuynman, G.M.: Generalized Bergman kernels and geometric quantization. J. Math. Phys.28, 573–583 (1987)

    Google Scholar 

  32. Tuynmann, G.M.: Quantization: Towards a comparison between methods. J. Math. Phys.28, 2829–2840 (1987)

    Google Scholar 

  33. Wells, R.O.: Differential analysis on compelx manifolds. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  34. Woodhouse, N.: Geometric quantization. Oxford: Clarendon Press 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordemann, M., Meinrenken, E. & Schlichenmaier, M. Toeplitz quantization of Kähler manifolds anggl(N), N→∞ limits. Commun.Math. Phys. 165, 281–296 (1994). https://doi.org/10.1007/BF02099772

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099772

Keywords

Navigation