Skip to main content
Log in

Nuclease S1 analysis of eubacterial 5S rRNA secondary structure

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Single-strand-specific nuclease S1 was employed as a structural probe to confirm locations of unpaired nucleotide bases in 5S rRNAs purified from prokaryotic species of rRNA superfamily I. Limited nuclease S1 digests of 3′- and 5′-end-labeled [32P]5S rRNAs were electrophoresed in parallel with reference endoribonuclease digests on thin allel with reference endoribonuclease digests on thin sequencing gels. Nuclease S1 primary hydrolysis patterns were comparable for 5S rRNAs prepared from all 11 species examined in this study. The locations of base-paired regions determined by enzymatic analysis corroborate the general features of the proposed universal five-helix model for prokaryotic 5S rRNA, although the results of this study suggest a significant difference between prokaryotic and eukaryotic 5S rRNAs in the evolution of helix IV. Furthermore, the extent of base-pairing predicted by helix IV needs to be reevaluated for eubacterial species. Clipping patterns in helices II and IV appear to be consistent with a secondary structural model that undergoes a conformational rearrangement between two (or more) structures. Primary clipping patterns in the helix II region, obtained by S1 analysis, may provide useful information concerning the tertiary structure of the 5S rRNA molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brownlee GG, Sanger F, Barrell BG (1967) Nucleotide sequence of 5S ribosomal RNA fromEscherichia coli. Nature 215:735–736

    PubMed  Google Scholar 

  • Corry MJ, Payne PI, Dyer TA (1974) The nucleotide sequence of 5S rRNA from the blue-green algaAnacystis nidulans. FEBS Lett 46:63–66

    Article  PubMed  Google Scholar 

  • Delihas N, Andresini W, Andersen J, Berns D (1982) Structural features unique to the 5S ribosomal RNAs of the thermophilic cyanobacteriumSynechococcus lividus III and the green plant chloroplasts. J Mol Biol 162:721–727

    Article  PubMed  Google Scholar 

  • De Vos P, De Ley J (1983) Intra- and intergeneric similarities ofPseudomonas andXanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509

    Google Scholar 

  • De Wachter R, Chen M-W, Vandenberghe A (1982) Conservation of secondary structure in 5S ribosomal RNA: a uniform model for eukaryotic, eubacterial, archaebacterial and organelle sequences is energetically favourable. Biochimie 64: 311–329

    PubMed  Google Scholar 

  • Digweed M, Ulbrich N, Erdmann VA (1984) The secondary structure of the 5S rRNA from the horsetailEquisetum arvense. FEBS Lett 176:255–260

    Article  Google Scholar 

  • Douthwaite S, Garrett RA (1981) Secondary structure of prokaryotic 5S ribosomal ribonucleic acids: a study with ribonucleases. Biochemistry 20:7301–7307

    Article  PubMed  Google Scholar 

  • Erdmann VA, Wolters J, Huysmans E, Vandenberghe A, De Wachter R (1984) Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res 12:r133-r166

    PubMed  Google Scholar 

  • Garrett-Wheeler E, Lockart RE, Kumar A (1984) Mapping of psoralen cross-linked nucleotides in RNA. Nucleic Acids Res 7:3405–3423

    Google Scholar 

  • Hansen JN (1981) Use of solubilizable acrylamide disulfide gels for isolation of DNA fragments suitable for sequence analysis. Anal Biochem 116:146–151

    Article  PubMed  Google Scholar 

  • Kao TH, Crothers DM (1980) A proton-coupled conformational switch ofEscherichia coli 5S ribosomal RNA. Proc Natl Acad Sci USA 77:3360–3364

    PubMed  Google Scholar 

  • MacDonell MT, Colwell RR (1984a) The nucleotide base sequence of Vibronacease 5S rRNA. FEBS Lett 175:183–188

    Article  PubMed  Google Scholar 

  • MacDonell MT, Colwell RR (1984b) Nucleotide sequence of 5S ribosomal RNA fromVibrio marinus. Microbiol Sci 1: 229–231

    PubMed  Google Scholar 

  • MacDonell MT, Colwell, RR (1985) Phylogeny of the Vibrionaceae and recommendation for two new generaListonella andShewanella. Syst Appl Microbiol 6:171–182

    Google Scholar 

  • MacKay RM, Salgado D, Bonen L, Stackebrandt E, Doolittle WF (1982) The 5S ribosomal RNAs ofParacoccus denitrificans andProchloron. Nucleic Acids Res 10:2963–2970

    PubMed  Google Scholar 

  • Ninio J (1979) Prediction of pairing schemes in RNA molecules—loop contributions and energy of wobble and nonwobble pairs. Biochimie 61:1133–1150

    PubMed  Google Scholar 

  • Noller HF (1974) Topography of 16S RNA in 30S ribosomal subunits. Nucleotide sequences and location of sites of reaction with kethoxal. Biochemistry 13:4694–4703

    PubMed  Google Scholar 

  • Noller HF (1984) Structure of ribosomal RNA. Annu Rev Biochem 53:119–162

    Article  PubMed  Google Scholar 

  • Peattie DA, Gilbert W (1980) Chemical probes for higher-order structure in RNA. Proc. Natl Acad Sci USA 77:4679–4682

    PubMed  Google Scholar 

  • Pieler T, Erdmann VA (1982) Three dimensional structural model of eubacterial 5S RNA that has functional implications. Proc Natl Acad Sci USA 79:4599–4603

    PubMed  Google Scholar 

  • Pieler T, Schreiber A, Erdmann VA (1984) Comparative structural analysis of eubacterial 5S rRNA by oxidation of adenines in the N-1 position. Nucleic Acids Res 12:3115–3126

    PubMed  Google Scholar 

  • Rabin D, Crothers DM (1979) Analysis of RNA secondary structure by photochemical reversal of psoralen crosslinks. Nucleic Acids Res 7:689–703

    PubMed  Google Scholar 

  • Randerath K, Randerath E (1967) Thin-layer separation methods for nucleic acid derivatives. Methods Enzymol 12A:323–347

    Google Scholar 

  • Ross A, Brimacombe R (1979) Experimental determination of interacting sequences in ribosomal RNA. Nature 281:271–276

    PubMed  Google Scholar 

  • Sanger F, Coulsen AR (1978) The use of thin acrylamide gels for sequencing. FEBS Lett 87:107–110

    Article  PubMed  Google Scholar 

  • Trifonov EN, Bolshoi G (1983) Open and closed 5S ribosomal RNA, the only two universal structures encoded in the nucleotide sequences. J Mol Biol 169:1–13

    PubMed  Google Scholar 

  • Vogt VM (1980) Purification and properties of S1 nuclease fromAspergillus. Methods Enzymol 65:248–264

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonell, M.T., Colwell, R.R. Nuclease S1 analysis of eubacterial 5S rRNA secondary structure. J Mol Evol 22, 237–242 (1985). https://doi.org/10.1007/BF02099753

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099753

Key words

Navigation