Skip to main content
Log in

Cytoskeletal actin gene families ofXenopus borealis andXenopus laevis

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We have sequenced the coding and leader regions, as well as part of the 3′ untranslated region, of aXenopus borealis type 1 cytoskeletal actin gene [defined according to the arrangement of acidic residues at the N-terminus; Vandekerckhove et al. (1981) J Mol Biol 152:413–426]. The encoded amino acid sequence is the same as the avian and mammalian β (type 1) cytoskeletal actins, except for an isoleucine at position 10 (as found in the mammalian γ cytoskeletal actins), and an extra amino acid, alanine, after the N-terminal methionine. Five introns were found, in the same positions as those of the rat and chicken β-actin genes. The 5′ and 3′ untranslated regions resemble those of the human γ (type 8) cytoskeletal actin gene more closely than the mammalian β genes.

Primer extension showed that this type 1 gene is transcribed in ovary and tadpole. Sequencing of primer extension products demonstrated two additional mRNA species inX. borealis, encoding type 7 and 8 isoforms. This contrasts with the closely related speciesXenopus laevis, where type 4, 5, and 8 isoforms have been found. The type 7 isoform has not previously been found in any other species. The mRNAs of theX. borealis type 1 and 8 andX. laevis type 5 and 8 isoforms contain highly homologous leaders. TheX. borealis type 7 mRNA has no leader homology with the other mRNA species and, unlike them, has no extra N-terminal alanine codon. The evolutionary implications of these data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baines W (1982) Thesis, University of Warwick, Coventry UK

  • Ballantine JEM, Woodland HR, Sturgess EA (1979) Changes in protein synthesis during the development ofXenopus laevis. J Embryol Exp Morphol 51:137–153

    PubMed  Google Scholar 

  • Bender W, Davidson N, Kindle KL, Taylor WC, Silverman M, Firtel RA (1978) The structure of M6, a recombinant plasmid containingDictyostelium DNA homologous to actin messenger RNA. Cell 15:779–788

    PubMed  Google Scholar 

  • Benoist C, O'Hare K, Breathnach R, Chambon P (1980) The ovalbumin gene-sequence of putative control regions. Nucleic Acids Res 8:127–142

    PubMed  Google Scholar 

  • Benton WD, Davis RW (1977) Screening lambda-gt recombinant clones by hybridization to single plaquesin situ. Science 196:180–182

    PubMed  Google Scholar 

  • Bergsma DJ, Chang KS, Schwartz RJ (1985) Novel chicken actin gene: third cytoplasmic isoform. Mol Cell Biol 5:1151–1162

    PubMed  Google Scholar 

  • Bisbee CA, Baker MA, Wilson AC, Hadji-Azimi I, Fischberg M (1977) Albumin phylogeny of the clawed toadX. laevis. Science 195:785–787

    PubMed  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383

    PubMed  Google Scholar 

  • Bremer JW, Busch H, Yeoman LC (1981) Evidence for a species of nuclear actin distinct from cytoplasmic and muscle actins. Biochemistry 20:2013–2017

    PubMed  Google Scholar 

  • Chang KS, Rothblum KN, Schwartz RJ (1985) The complete sequence of the chicken alpha-cardiac gene: a highly conserved vertebrate gene. Nucleic Acids Res 13:1223–1237

    PubMed  Google Scholar 

  • Cooper AD, Crain WR (1982) Complete nucleotide sequence of a sea-urchin actin gene. Nucleic Acids Res 10:4081–4092

    PubMed  Google Scholar 

  • Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O'Connell C, Spritz RA, DeRiel JK, Forget BG, Weissman SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) The structure and evolution of the human beta-globin gene family. Cell 21:653–668

    PubMed  Google Scholar 

  • Elzinga M, Lu RC (1976) In: Perry SV, Margreth A, Adelstein RS (eds) Contractile systems in non-muscle tissues. North-Holland, Amsterdam, pp 29–37

    Google Scholar 

  • Erba HP, Gunning P, Kedes L (1986) Nucleotide sequence of the human γ cytoskeletal actin mRNA; anomalous evolution of vertebrate non-muscle actin genes. Nucleic Acids Res 14: 5275–5294

    PubMed  Google Scholar 

  • Files JG, Carr J, Hirsh D (1983) The actin gene family ofCaenorhabditis elegans. J Mol Biol 164:355–375

    PubMed  Google Scholar 

  • Fornwald JA, Kuncid G, Peng I, Ordahl CP (1982) The complete nucleotide sequence of the chick alpha-actin gene and its evolutionary relationship to the actin gene family. Nucleic Acids Res 10:3861–3876

    PubMed  Google Scholar 

  • Fyrberg EA, Bond BJ, Hershey ND, Mixter KS, Davidson N (1981) The actin genes ofDrosophila: protein coding regions are highly conserved but intron positions are not. Cell 24: 107–116

    PubMed  Google Scholar 

  • Gunning P, Mohun T, Ng SY, Ponte P, Kedes L (1984) Evolution of human sarcomeric-actin genes: evidence for units of selection within the 3′ untranslated regions of the mRNAs. J Mol Evol 20:202–214

    PubMed  Google Scholar 

  • Hamada H, Perrine MG, Kakunaga T (1982) Molecular structure and evolutionary origin of human cardiac muscle actin gene. Proc Natl Acad Sci USA 79:5901–5905

    PubMed  Google Scholar 

  • Hanauer A, Levin M, Heilig R, Daegelen D, Kalm A, Mandel JL (1983) Isolation and characterization of cDNA clones for human skeletal muscle alpha-actin. Nucleic Acids Res 11: 3503–3516

    PubMed  Google Scholar 

  • Kost TA, Theodorakis N, Hughes SH (1983) The nucleotide sequence of the chick cytoplasmic alpha-actin gene. Nucleic Acids Res 11:8287–8301

    PubMed  Google Scholar 

  • Luse DS, Haynes JR, Van Leeuwen D, Schon EA, Cleary ML, Shapiro SG, Lingrel JB, Roeder RG (1981) Transcription of the beta-like globin genes and pseudogenes of the goat in a cell-free system. Nucleic Acids Res 9:4339–4354

    PubMed  Google Scholar 

  • Marotta CA, Strocchi P, Gilbert JM (1978) Microheterogeneity of brain cytoplasmic and synaptoplasmic actins. J Neurochem 30:1441–1451

    PubMed  Google Scholar 

  • Maxam AM, Gilbert W (1978) Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol 65: 499–559

    Google Scholar 

  • Mayer Y, Czosnek H, Zeelon PE, Yaffe D, Nudel U (1984) Expression of the genes coding for the skeletal muscle and cardiac actins in the heart. Nucleic Acids Res 12:1087–1100

    PubMed  Google Scholar 

  • Miller AD, Curran T, Verma M (1984) c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36:51–60

    PubMed  Google Scholar 

  • Nudel U, Zakur R, Shani M, Neuman S, Levy Z, Yaffe D (1983) The nucleotide sequence of the rat cytoplasmic beta-actin gene. Nucleic Acids Res 11:1759–1771

    PubMed  Google Scholar 

  • Ordahl CP, Cooper TA (1983) Strong homology in promoter and 3′-untranslated regions of chick and rat alpha-actin genes. Nature 303:348–349

    PubMed  Google Scholar 

  • Ponte P, Ng SY, Engel J, Gunning P, Kedes L (1984) Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human beta-actin cDNA. Nucleic Acids Res 12:1687–1696

    PubMed  Google Scholar 

  • Pudney M, Varma MGR, Leake CJ (1973) Establishment of a cell line XTC-2 from the South African clawed toad,Xenopus laevis. Experientia 29:466–467

    PubMed  Google Scholar 

  • Sanchez F, Tobin SL, Rdest U, Zulauf E, McCarthy BJ (1983) TwoDrosophila actin genes in detail: gene structure, protein structure and transcription during development. J Mol Biol 163:533–551

    PubMed  Google Scholar 

  • Sanger F, Coulson AR, Barrell BG, Smith AJH, Roe BA (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143:161–178

    PubMed  Google Scholar 

  • Schuler MA, McOsker P, Keller EB (1983) DNA sequence of two linked actin genes of the sea urchinS. purpuratus. Mol Cell Biol 3:448–456

    PubMed  Google Scholar 

  • Shah DM, Hightower RC, Meagher RB (1982) Complete nucleotide sequence of a soybean actin gene. Proc Natl Acad Sci USA 79:1022–1026

    Google Scholar 

  • Smith HO, Birnstiel ML (1976) A simple method for DNA restriction site mapping. Nucleic Acids Res 3:2387–2398

    PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Stutz F, Spohr G (1986) Isolation and characterisation of sarcomeric actin genes expressed inXenopus laevis embryos. J Mol Biol 187:349–361

    PubMed  Google Scholar 

  • Theibaud CH, Fischberg M (1977) DNA content in the genusXenopus. Chromosoma 59:253–257

    PubMed  Google Scholar 

  • Tymowska J, Fischberg M (1973) Chromosome complements of the genusXenopus. Chromosoma 44:335–342

    PubMed  Google Scholar 

  • Ueyama H, Hamada H, Battula N, Kakunaga T (1984) Structure of a human smooth muscle actin gene (aortic type) with a unique intron site. Mol Cell Biol 4:1073–1078

    PubMed  Google Scholar 

  • Vandekerckhove J, Weber K (1978a) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802

    PubMed  Google Scholar 

  • Vandekerckhove J, Weber K (1978b) Actin amino acid sequences. Comparison of actins from calf thymus, bovine brain, and SV40-transformed mouse 3T3 cells with rabbit skeletal muscle actin. Eur J Biochem 90:451–462

    PubMed  Google Scholar 

  • Vandekerckhove J, Weber K (1978c) Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins. Proc Natl Acad Sci USA 75:1106–1110

    PubMed  Google Scholar 

  • Vandekerckhove J, Weber K (1979) The complete amino acid sequences of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. Differentiation 14:123–133

    PubMed  Google Scholar 

  • Vandekerckhove J, Weber K (1981) Actin typing on total cellular extracts: a highly sensitive protein-chemical procedure able to distinguish different actins. Eur J Biochem 118:595–603

    Google Scholar 

  • Vandekerckhove J, Weber K (1984) Chordate muscle actins differ distinctly from invertebrate muscle actins. J Mol Biol 179:391–413

    PubMed  Google Scholar 

  • Vandekerckhove J, Franke WW, Weber K (1981) Diversity of expression of non-muscle actin in Amphibia. J Mol Biol 152: 413–426

    PubMed  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    PubMed  Google Scholar 

  • Woodland HR, Warmington JR, Ballantine JEM, Turner PC (1984) Are there major developmentally regulated H4 gene classes inXenopus? Nucleic Acids Res 12:4939–4958

    PubMed  Google Scholar 

  • Yaffe D, Nudel U, Mayer Y, Neuman S (1985) Highly conserved sequences in the 3′ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res 13:3723–3737

    PubMed  Google Scholar 

  • Zakut R, Shani M, Givol D, Neuman S, Yaffe D, Nudel U (1982) The nucleotide sequence of the rat skeletal muscle actin gene. Nature 298:857–859

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cross, G.S., Wilson, C., Erba, H.P. et al. Cytoskeletal actin gene families ofXenopus borealis andXenopus laevis . J Mol Evol 27, 17–28 (1988). https://doi.org/10.1007/BF02099726

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099726

Key words

Navigation