Annals of Operations Research

, Volume 57, Issue 1, pp 45–63 | Cite as

Discrete-event dynamic systems: The strictly convex case

  • R. A. Cuninghame-Green
  • P. Butkovič


Given the observed outputgj of a discrete-event system, a classical problem is to find a matrix realisationgj =cAjb withA of least possible dimension. When the sequencegj is convex and ultimately 1-periodic, a linear-time algorithm suffices to construct such a realisation over the algebra (R, max, +). When the transient is strictly convex, this realisation is minimal-dimensional.


Discrete dynamic systems max-algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Butkovič, Regularity of matrices in min-algebra and its time-complexity, Preprint 14/92, School of Mathematics and Statistics, University of Birmingham (1992).Google Scholar
  2. [2]
    C.T. Chen,Linear System Theory and Design (Holt, Rinehart and Winston, 1984).Google Scholar
  3. [3]
    G. Cohen, D. Dubois, J.P. Quadrat and M. Viot, A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing, IEEE Trans. Auto. Contr. AC-30(1985)210–220.Google Scholar
  4. [4]
    R.A. Cuninghame-Green, Process synchronisation in a steelworks — a problem of feasibility,Proc. 2nd Int. Conf. on Operational Research (1960) pp. 323–328.Google Scholar
  5. [5]
    R.A. Cuninghame-Green,Minimax Algebra, Lecture Notes in Economics and Mathematical Systems No. 166 (Springer, 1979).Google Scholar
  6. [6]
    R.A. Cuninghame-Green and P.F.J. Meijer, An algebra for piecewise-linear minimax problems, Discr. Appl. Math. 2(1980)267–294.Google Scholar
  7. [7]
    S. Gaubert, Théorie des systèmes linéaires dans les dioïdes, Thesis, Ecole Nationale Supérieure des Mines de Paris (1992).Google Scholar
  8. [8]
    S. Gaubert, On rational series in one variable over certain dioids, submitted for publication.Google Scholar
  9. [9]
    M. Gondran and M. Minoux, L'indépendance linéaire dans les dioïdes, Bull. de la Direction des Etudes et Recherches, EDF Serie C — Mathématiques, Informatique 1(1978)67–90.Google Scholar
  10. [10]
    G.J. Olsder and R.E. De Vries, On an analogy of minimal realisations in conventional and discrete-event dynamic systems, in:Algèbres Exotiques et Systèmes a Évènements Discrets, Séminaire CNRS/CNET/INRIA, CNET, Issy-les-Moulineaux (3–4 Juin 1987) pp. 191–213.Google Scholar
  11. [11]
    G.J. Olsder and C. Roos, Cramer and Cayley-Hamilton in the max-algebra, Lin. Alg. Appl. 101(1988)87–108.Google Scholar
  12. [12]
    C.H. Papadimitriou and K. Steiglitz,Combinatorial Optimization — Algorithms and Complexity (Prentice-Hall, Englewood Cliffs, NJ, 1982).Google Scholar
  13. [13]
    U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures,Annals of Discrete Mathematics, No. 10 (North-Holland, Amsterdam, 1981).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • R. A. Cuninghame-Green
    • 1
  • P. Butkovič
    • 1
  1. 1.School of Mathematics and StatisticsThe University of BirminghamBirminghamUnited Kingdom

Personalised recommendations