Communications in Mathematical Physics

, Volume 138, Issue 1, pp 63–105 | Cite as

Graph theory,SO(n) current algebra and the Virasoro master equation

  • M. B. Halpern
  • N. A. Obers


We announce an isomorphism between a set of generically irrational affine-Virasoro constructions onSO(n) and the unlabelled graphs of ordern. On the one hand, the conformal constructions are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. High-level expansion provides a strong argument that each construction is unitary down to some finite critical level.


Neural Network Statistical Physic Complex System Graph Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kač, V.G.: Simple graded Lie algebras of finite growth. Funct. Anal. App.1, 328–329 (1967)Google Scholar
  2. 1a.
    Moody, R.V.: Lie algebras associated with general Cartan matrices. Bull. Am. Math. Soc.73, 217–221 (1967)Google Scholar
  3. 2.
    Bardakci, K., Halpern, M.B.: New dual quark models. Phys. Rev. D3, 2493–2506 (1971)CrossRefGoogle Scholar
  4. 3.
    Ramond, P.: Dual theory for free fermions. Phys. Rev. D3, 2415–2418 (1971)CrossRefGoogle Scholar
  5. 4.
    Halpern, M.B.: The two faces of a dual pion-quark model. Phys. Rev. D4, 2398–2401 (1971)CrossRefGoogle Scholar
  6. 5.
    Halpern, M.B.: Quantum “solitons” which areSU(N) fermions. Phys. Rev. D12, 1684–1699 (1975)CrossRefGoogle Scholar
  7. 6.
    Banks, T., Horn, D., Neuberger, H.: Bosonization of theSU(N) Thirring models. Nucl. Phys. B108, 119–129 (1976)CrossRefGoogle Scholar
  8. 7.
    Frenkel, I.B., Kač, V.G.: Basic representations of affine Lie algebras and dual resonance models. Inv. Math.62, 23–66 (1980)CrossRefGoogle Scholar
  9. 7a.
    Segal, G.: Unitary representations of some infinite dimensional groups. Commun. Math. Phys.80, 301–342 (1981)CrossRefGoogle Scholar
  10. 8.
    Witten, E.: Non-abelian bosonization in two dimensions. Commun. Math. Phys.92, 455–472 (1984)CrossRefGoogle Scholar
  11. 8a.
    Segal, G.: unpublishedGoogle Scholar
  12. 8b.
    Knizhnik, V.G., Zamolodchikov, A.M.: Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys.B247, 83–103 (1984)CrossRefGoogle Scholar
  13. 9.
    Goddard, P., Kent, A., Olive, D.: Virasoro algebras and coset space models. Phys. Lett.152B, 88–92 (1985)Google Scholar
  14. 10.
    Gross, D., Harvey, J.A., Martinec, E., Rohm, R.: Heterotic string. Phys. Rev. Lett.54, 502–505 (1985)CrossRefGoogle Scholar
  15. 11.
    Freericks, J.K., Halpern, M.B.: Conformal deformation by the currents of affineg. Ann. Phys.188, 258–306 (1988); Erratum, ibid. Conformal deformation by the currents of affineg. Ann. Phys.190, 212 (1989)CrossRefGoogle Scholar
  16. 12.
    Halpern, M.B.: Direct approach to operator conformal constructions: From fermions to primary fields. Ann. Phys.194, 247–280 (1989)CrossRefGoogle Scholar
  17. 13.
    Goddard, P., Olive, D.: Kac-Moody and Virasoro algebras in relation to quantum physics. Int. J. Mod. Phys. A1, 303–414 (1986)CrossRefGoogle Scholar
  18. 14.
    Frenkel, I.B., Lepowsky, J., Meurman, A.: To appearGoogle Scholar
  19. 15.
    Halpern, M.B., Kiritsis, E.: General Virasoro construction on affineg. Mod. Phys. Lett. A4, 1373–1380 (1989); Erratum ibid. General Virasoro construction on affineg. Mod. Phys. Lett. A4, 1797 (1989)CrossRefGoogle Scholar
  20. 16.
    Halpern, M.B., Yamron, J.P.: Geometry of the general affine-Virasoro construction. Nucl. Phys. B332, 411–424 (1990)CrossRefGoogle Scholar
  21. 17.
    Morozov, A.Yu., Perelomov, A.M., Rosly, A.A., Shifman, M.A., Turbiner, A.V.: Quasiexactly-solvable quantal problems: One-dimensional analogue of rational conformal field theories. Int. J. Mod. Phys. A5, 803–832 (1990)CrossRefGoogle Scholar
  22. 18.
    Halpern, M.B., Kiritsis, E., Obers, N.A., Porrati, M., Yamron, J.P.: New unitary affine-Virasoro constructions. Int. J. Mod. Phys. A5, 2275–2296 (1990)CrossRefGoogle Scholar
  23. 19.
    Witten, E.: The central charge in three dimensions. Memorial Volume for V. Knizhnik, Brink, L. et al. (eds.) World Scientific: Singapore 1990Google Scholar
  24. 20.
    Halpern, M.B., Obers, N.A.: Unitary irrational central charge on compactg. I. (simply-laced gx)#q≧2. Int. J. Mod. Phys. A6, 1835–1857 (1991)CrossRefGoogle Scholar
  25. 21.
    Schrans, S., Troost, W.: Generalized Virasoro constructions forSU(3). Nucl. Phys. B345, 584–606 (1990)CrossRefGoogle Scholar
  26. 22.
    Halpern, M.B., Obers, N.A.: Unitary irrational central charge on compactg. II. High-level analysis andSU(3)BASIC#. Nucl. Phys. B345, 607–644 (1990)CrossRefGoogle Scholar
  27. 23.
    Halpern, M.B., Yamron, J.P.: A generic affine-Virasoro action. Nucl. Phys. B351, 333–352 (1991)CrossRefGoogle Scholar
  28. 24.
    Harary, F., Palmer, E.M.: Graphical enumeration. New York, London: Academic Press 1973Google Scholar
  29. 25.
    White, A.T.: Graphs, groups and surfaces. Amsterdam, London: North-Holland/American Elsevier 1973Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. B. Halpern
    • 1
    • 2
  • N. A. Obers
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Theoretical Physics Group, Physics DivisionLawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations