Skip to main content
Log in

Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper develops a new theory of tensor invariants of a completely integrable non-degenerate Hamiltonian system on a smooth manifoldM n. The central objects in this theory are supplementary invariant Poisson structuresP c which are incompatable with the original Poisson structureP 1 for this Hamiltonian system. A complete classification of invariant Poisson structures is derived in a neighbourhood of an invariant toroidal domain. This classification resolves the well-known Inverse Problem that was brought into prominence by Magri's 1978 paper deveoted to the theory of compatible Poisson structures. Applications connected with the KAM theory, with the Kepler problem, with the basic integrable problem of celestial mechanics, and with the harmonic oscillator are pointed out. A cohomology is defined for dynamical systems on smooth manifolds. The physically motivated concepts of dynamical compatibility and strong dynamical compatibility of pairs of Poisson structures are introduced to study the diversity of pairs of Poisson structures incompatible in Magri's sense. It is proved that if a dynamical systemV preserves two strongly dynamically compatible Poisson structuresP 1 andP 2 in a general position then this system is completely integrable. Such a systemV generates a hierarchy of integrable dynamical systems which in general are not Hamiltonian neither with respect toP 1 nor with respect toP 2. Necessary conditions for dynamical compatibility and for strong dynamical compatibility are derived which connect these global properties with new local invariants of an arbitrary pair of incompatible Poisson structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. London: The Benjamin/Cummings Publishing, 1978

    Google Scholar 

  2. Arnold, V.I.: Proof of A.N. Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbation of the Hamiltonian. Uspekhi Mat. Nauk. U.S.S.R.18, Ser.5, 13–40 (1963)

    Google Scholar 

  3. Arnold, V.I.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: Springer, 1978

    Google Scholar 

  4. Birkhoff, G.D.: Dynamical systems. Providence, Rhode Island: American Mathematical Society, 1966

    Google Scholar 

  5. Bogoyavlenskij, O.J.: Invariant incompatible Poisson structures. Proc. R. Soc. Lond. A450, 723–730 (1995)

    Google Scholar 

  6. Bogoyavlenskij, O.I.: Incompatible Poisson structures and integrable Hamiltonian systems. C. R. Math. Rep. Acad. Sci. Canada17, 123–128 (1995)

    Google Scholar 

  7. Bogoyavlenskij, O.I.: A cohomology for dynamical systems. C. R. Math. Rep. Acad. Sci. Canada17, 253–258 (1995)

    Google Scholar 

  8. Brouzet, R.: Systèmes bihamiltoniens et complète intégrabilité en dimension 4. C. R. Acad. Sci. Paris311, S. I, 895–898 (1990)

    Google Scholar 

  9. Brouzet, R.: About the existence of recursion operators for completely integrable Hamiltonian systems near a Liouville torus. J. Math. Phys.34, 1309–1313 (1993)

    Google Scholar 

  10. Brouzet, R., Molino, P., Turiel, F.J.: Geomètrie des systèmes bihamiltoniens. Indag. Mathem., N.S.,4, 269–296 (1993)

    Google Scholar 

  11. Crampin, M., Marmo, G., Rubano, C.: Conditions for the complete integrability of a dynamical system admitting alternative Lagrangians. Phys. Lett. A97, 88–90 (1983)

    Google Scholar 

  12. Das, A., Okubo, S.: A systematic study of the Toda lattice. Ann. Phys.190, 215–232 (1989)

    Google Scholar 

  13. De Fillipo, S., Vilasi, G., Marmo, G., Salerno, M.: A new characterization on completely integrable systems. Nuovo Cimento B83, 97–112 (1984)

    Google Scholar 

  14. De Rham, G.: Sur l'Analysis situs des variétés an dimensions. J. de Mathem. Pures and Appl.10, 115–200 (1931)

    Google Scholar 

  15. Dorfman, I.Ya.: Dirac structures and integrability of nonlinear evolution equations. New York: Wiley and Sons, 1993

    Google Scholar 

  16. Duff, G.F.D.: Differential forms in manifolds with boundary. Ann. Math.56, 115–127 (1952)

    Google Scholar 

  17. Duff, G.F.D., Spencer, D.C.: Harmonic tensors of Riemannian manifolds with boundary. Ann. Math.56, 128–156 (1952)

    Google Scholar 

  18. Duistermaat, J.J.: On global action-angle coordinates. Comm. Pure Appl. Math.33, 687–706 (1980)

    Google Scholar 

  19. Fernandes, R.L.: Completely integrable bi-Hamiltonian systems. J. Dyn. Diff. Eq.6, 53–69 (1994)

    Google Scholar 

  20. Fuchssteiner, B.: Applications of hereditary symmetries to nonlinear evolution equations. Nonlinear Analysis, Theory, Methods and Applic.3, 849–862 (1979)

    Google Scholar 

  21. Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems. Progr. Theor. Phys.68, 1082–1104 (1982)

    Google Scholar 

  22. Fuchssteiner, B., Fokas, A.S.: Sympletic structures, their Bäcklund transformations and hereditary symmetries. Physica D4, 47–66 (1981)

    Google Scholar 

  23. Gardner, C.S., Greene, J.M., Kurskal, M.D., Miura, R.M.: Korteweg-de Vries Equation and Generalizations. VI. Methods for exact solution. Comm. Pure Appl. Math.27, 97–133 (1974)

    Google Scholar 

  24. Gelfand, I.M., Dorfman, I.Ya.: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Applic.13, 248–262 (1979)

    Google Scholar 

  25. Gelfand, I.M., Dorfman, I.Ya.: The Schouten bracket and Hamiltonian operators. Funct. Anal. Applic.14, 223–226 (1980)

    Google Scholar 

  26. Kolmogorov, A.N.: On conservation of conditionally periodic motions under small variations of the Hamiltonian. Dokl. Akad. Nauk SSSR98, 527–530 (1954)

    Google Scholar 

  27. Kolmogorov, A.N.: The general theory of dynamical systems and classical mechanics. In: Proc. Intern. Congr. Math. 1954,1, Amsterdam: North-Holland Publ. Co. 1957, pp. 315–333

    Google Scholar 

  28. Kosmann-Schwarzbach, Y.: Geométrie des systèmes bihamiltoniens. Seminaire de Math. Sup., Press. Univers. de Montreal102, 185–216 (1986)

    Google Scholar 

  29. Kosmann-Schwarzbach, Y., Magri, F.: Poisson Nijenhuis structures. Ann. Inst. Henri Poincaré53, 35–81 (1990)

    Google Scholar 

  30. Landi, G., Marmo, G., Vilasi, G.: Recursion operators: Meaning and existence for completely integrable systems. J. Math. Phys.35, 808–815 (1994)

    Google Scholar 

  31. Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom.12, 253–300 (1977)

    Google Scholar 

  32. Liouville, J.: Note sur l'intégration des équations différentielles de la Dynamique. J. Math. Pures Appl.20, 137–138 (1855)

    Google Scholar 

  33. Magnano, G., Magri, F.: Poisson-Nijenhuis structures, truncated loop algebras and Sato's KP hierarchy. In: Integrable systems and quantum groups. Singapore, World Scientific Publishing Company, 1992, pp. 147–172

    Google Scholar 

  34. Magri, F.: A simple model of an integrable Hamiltonian system. J. Math. Phys.19, 1156–1162 (1978)

    Google Scholar 

  35. Magri, F.: A geometrical approach to the nonlinear solvable equations. In: Nonlinear evolution equations and dynamical systems, M. Boiti, F. Pempinelli and G. Soliani (Eds.), Lecture Notes in Physics,120, Berlin, Heidelberg, New York: Springer, 1980, pp. 233–263

    Google Scholar 

  36. Magri, F., Morosi, C.: A geometrical characterization of integrable Hamiltonian systems through the theory of the Poisson-Nijenhuis manifolds. Quaderno S19, Universita di Milano (1984)

  37. Marmo, G., Vilasi, G.: When do recursion operators generate new conservation laws? Phys. Lett. B277, 137–140 (1992)

    Google Scholar 

  38. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121–130 (1974)

    Google Scholar 

  39. Marsden, J., Ratiu, T., Weinstein, A.: Semi-direct products and reduction in mechanics. Trans. Amer. Math. Soc.281, 147–177 (1984)

    Google Scholar 

  40. McKean, H.P.: Compatible brackets in Hamiltonian mechanics. In: Important developments in solition theory. A.S. Fokas, V.E. Zakharov (eds.). Berlin, Heidelberg, New York: Springer, 1993, pp. 334–354

    Google Scholar 

  41. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Annalen169, 136–176 (1967)

    Google Scholar 

  42. Nekhoroshev, N.N.: Action-angle variables and their generalizations. Trans. Moscow Math. Soc.26, 180–198 (1972)

    Google Scholar 

  43. Nekhoroshev, N.N.: The Poincaré-Lyapunov-Liouville-Arnol'd Theorem. Funct. Anal. Appl.28, 128–129 (1992)

    Google Scholar 

  44. Nijenhuis, A.:X n−1 -forming sets of eigenvectors. Proc. Kon. Ned. Akad. Amsterdam54, 200–212 (1951)

    Google Scholar 

  45. Oevel, W., Zhang, H., Fuchssteiner, B.: Mastersymmetries and multi-Hamiltonian formulations for some integrable lattice systems. Progr. Theor. Phys.81, 294–308 (1989)

    Google Scholar 

  46. Olver, P.J.: BiHamiltonian systems. In: Pitman Research Notes in Mathematics Series157. B.D. Sleeman, R.J. Jarvis (eds.). New York: Longman Scientific and Technical, 1987, pp. 176–193

    Google Scholar 

  47. Olver, P.J.: Canonical forms and integrability of bi-Hamiltonian systems. Phys. Lett. A148. 177–187 (1990)

    Google Scholar 

  48. Olver, P.J.: Applications of Lie groups to differential equations, 2nd edition. Berlin, Heidelberg, New York: Springer, 1993

    Google Scholar 

  49. Palais, R.S.: A definition of the exterior derivative in terms of Lie derivatives. Proc. Amer. Math. Soc.5, 902–908 (1954)

    Google Scholar 

  50. Poincaré, H.: Les méthodes nouvelles de la méchanique céleste. T. 1. Paris: Gauthier-Villars, 1892

    Google Scholar 

  51. Siegel, C.L., Moser, J.K.: Lectures on celestial mechanics. Berlin, Heidelberg, New York: Springer, 1971

    Google Scholar 

  52. Souriau, J.M.: Structure des systèmes dynamiques. Paris: Dunod, 1970

    Google Scholar 

  53. Turiel, F.J.: Classification locale d'un couple de formes symplectiques Poisson-compatibles. C.R. Acad. Sci. Paris308, S. I, 575–578 (1989)

    Google Scholar 

  54. Vilasi, G.: New aspects of complete integrability. In: Integrable systems and quantum groups. Singapore, World Scientific Publishing Company, 1992, pp. 126–146

    Google Scholar 

  55. Ten Eikelder, H.M.M.: On the local structures of recursion operators for symmetries. Proc. Kon. Ned. Akad. Amsterdam89, 389–403 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Jimbo

Supported by NSERC grant OGPIN 337.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogoyavlenskij, O.I. Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures. Commun.Math. Phys. 180, 529–586 (1996). https://doi.org/10.1007/BF02099623

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099623

Keywords

Navigation