Abstract
This paper develops a new theory of tensor invariants of a completely integrable non-degenerate Hamiltonian system on a smooth manifoldM n. The central objects in this theory are supplementary invariant Poisson structuresP c which are incompatable with the original Poisson structureP 1 for this Hamiltonian system. A complete classification of invariant Poisson structures is derived in a neighbourhood of an invariant toroidal domain. This classification resolves the well-known Inverse Problem that was brought into prominence by Magri's 1978 paper deveoted to the theory of compatible Poisson structures. Applications connected with the KAM theory, with the Kepler problem, with the basic integrable problem of celestial mechanics, and with the harmonic oscillator are pointed out. A cohomology is defined for dynamical systems on smooth manifolds. The physically motivated concepts of dynamical compatibility and strong dynamical compatibility of pairs of Poisson structures are introduced to study the diversity of pairs of Poisson structures incompatible in Magri's sense. It is proved that if a dynamical systemV preserves two strongly dynamically compatible Poisson structuresP 1 andP 2 in a general position then this system is completely integrable. Such a systemV generates a hierarchy of integrable dynamical systems which in general are not Hamiltonian neither with respect toP 1 nor with respect toP 2. Necessary conditions for dynamical compatibility and for strong dynamical compatibility are derived which connect these global properties with new local invariants of an arbitrary pair of incompatible Poisson structures.
Similar content being viewed by others
References
Abraham, R., Marsden, J.E.: Foundations of Mechanics. London: The Benjamin/Cummings Publishing, 1978
Arnold, V.I.: Proof of A.N. Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbation of the Hamiltonian. Uspekhi Mat. Nauk. U.S.S.R.18, Ser.5, 13–40 (1963)
Arnold, V.I.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: Springer, 1978
Birkhoff, G.D.: Dynamical systems. Providence, Rhode Island: American Mathematical Society, 1966
Bogoyavlenskij, O.J.: Invariant incompatible Poisson structures. Proc. R. Soc. Lond. A450, 723–730 (1995)
Bogoyavlenskij, O.I.: Incompatible Poisson structures and integrable Hamiltonian systems. C. R. Math. Rep. Acad. Sci. Canada17, 123–128 (1995)
Bogoyavlenskij, O.I.: A cohomology for dynamical systems. C. R. Math. Rep. Acad. Sci. Canada17, 253–258 (1995)
Brouzet, R.: Systèmes bihamiltoniens et complète intégrabilité en dimension 4. C. R. Acad. Sci. Paris311, S. I, 895–898 (1990)
Brouzet, R.: About the existence of recursion operators for completely integrable Hamiltonian systems near a Liouville torus. J. Math. Phys.34, 1309–1313 (1993)
Brouzet, R., Molino, P., Turiel, F.J.: Geomètrie des systèmes bihamiltoniens. Indag. Mathem., N.S.,4, 269–296 (1993)
Crampin, M., Marmo, G., Rubano, C.: Conditions for the complete integrability of a dynamical system admitting alternative Lagrangians. Phys. Lett. A97, 88–90 (1983)
Das, A., Okubo, S.: A systematic study of the Toda lattice. Ann. Phys.190, 215–232 (1989)
De Fillipo, S., Vilasi, G., Marmo, G., Salerno, M.: A new characterization on completely integrable systems. Nuovo Cimento B83, 97–112 (1984)
De Rham, G.: Sur l'Analysis situs des variétés an dimensions. J. de Mathem. Pures and Appl.10, 115–200 (1931)
Dorfman, I.Ya.: Dirac structures and integrability of nonlinear evolution equations. New York: Wiley and Sons, 1993
Duff, G.F.D.: Differential forms in manifolds with boundary. Ann. Math.56, 115–127 (1952)
Duff, G.F.D., Spencer, D.C.: Harmonic tensors of Riemannian manifolds with boundary. Ann. Math.56, 128–156 (1952)
Duistermaat, J.J.: On global action-angle coordinates. Comm. Pure Appl. Math.33, 687–706 (1980)
Fernandes, R.L.: Completely integrable bi-Hamiltonian systems. J. Dyn. Diff. Eq.6, 53–69 (1994)
Fuchssteiner, B.: Applications of hereditary symmetries to nonlinear evolution equations. Nonlinear Analysis, Theory, Methods and Applic.3, 849–862 (1979)
Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems. Progr. Theor. Phys.68, 1082–1104 (1982)
Fuchssteiner, B., Fokas, A.S.: Sympletic structures, their Bäcklund transformations and hereditary symmetries. Physica D4, 47–66 (1981)
Gardner, C.S., Greene, J.M., Kurskal, M.D., Miura, R.M.: Korteweg-de Vries Equation and Generalizations. VI. Methods for exact solution. Comm. Pure Appl. Math.27, 97–133 (1974)
Gelfand, I.M., Dorfman, I.Ya.: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Applic.13, 248–262 (1979)
Gelfand, I.M., Dorfman, I.Ya.: The Schouten bracket and Hamiltonian operators. Funct. Anal. Applic.14, 223–226 (1980)
Kolmogorov, A.N.: On conservation of conditionally periodic motions under small variations of the Hamiltonian. Dokl. Akad. Nauk SSSR98, 527–530 (1954)
Kolmogorov, A.N.: The general theory of dynamical systems and classical mechanics. In: Proc. Intern. Congr. Math. 1954,1, Amsterdam: North-Holland Publ. Co. 1957, pp. 315–333
Kosmann-Schwarzbach, Y.: Geométrie des systèmes bihamiltoniens. Seminaire de Math. Sup., Press. Univers. de Montreal102, 185–216 (1986)
Kosmann-Schwarzbach, Y., Magri, F.: Poisson Nijenhuis structures. Ann. Inst. Henri Poincaré53, 35–81 (1990)
Landi, G., Marmo, G., Vilasi, G.: Recursion operators: Meaning and existence for completely integrable systems. J. Math. Phys.35, 808–815 (1994)
Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom.12, 253–300 (1977)
Liouville, J.: Note sur l'intégration des équations différentielles de la Dynamique. J. Math. Pures Appl.20, 137–138 (1855)
Magnano, G., Magri, F.: Poisson-Nijenhuis structures, truncated loop algebras and Sato's KP hierarchy. In: Integrable systems and quantum groups. Singapore, World Scientific Publishing Company, 1992, pp. 147–172
Magri, F.: A simple model of an integrable Hamiltonian system. J. Math. Phys.19, 1156–1162 (1978)
Magri, F.: A geometrical approach to the nonlinear solvable equations. In: Nonlinear evolution equations and dynamical systems, M. Boiti, F. Pempinelli and G. Soliani (Eds.), Lecture Notes in Physics,120, Berlin, Heidelberg, New York: Springer, 1980, pp. 233–263
Magri, F., Morosi, C.: A geometrical characterization of integrable Hamiltonian systems through the theory of the Poisson-Nijenhuis manifolds. Quaderno S19, Universita di Milano (1984)
Marmo, G., Vilasi, G.: When do recursion operators generate new conservation laws? Phys. Lett. B277, 137–140 (1992)
Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121–130 (1974)
Marsden, J., Ratiu, T., Weinstein, A.: Semi-direct products and reduction in mechanics. Trans. Amer. Math. Soc.281, 147–177 (1984)
McKean, H.P.: Compatible brackets in Hamiltonian mechanics. In: Important developments in solition theory. A.S. Fokas, V.E. Zakharov (eds.). Berlin, Heidelberg, New York: Springer, 1993, pp. 334–354
Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Annalen169, 136–176 (1967)
Nekhoroshev, N.N.: Action-angle variables and their generalizations. Trans. Moscow Math. Soc.26, 180–198 (1972)
Nekhoroshev, N.N.: The Poincaré-Lyapunov-Liouville-Arnol'd Theorem. Funct. Anal. Appl.28, 128–129 (1992)
Nijenhuis, A.:X n−1 -forming sets of eigenvectors. Proc. Kon. Ned. Akad. Amsterdam54, 200–212 (1951)
Oevel, W., Zhang, H., Fuchssteiner, B.: Mastersymmetries and multi-Hamiltonian formulations for some integrable lattice systems. Progr. Theor. Phys.81, 294–308 (1989)
Olver, P.J.: BiHamiltonian systems. In: Pitman Research Notes in Mathematics Series157. B.D. Sleeman, R.J. Jarvis (eds.). New York: Longman Scientific and Technical, 1987, pp. 176–193
Olver, P.J.: Canonical forms and integrability of bi-Hamiltonian systems. Phys. Lett. A148. 177–187 (1990)
Olver, P.J.: Applications of Lie groups to differential equations, 2nd edition. Berlin, Heidelberg, New York: Springer, 1993
Palais, R.S.: A definition of the exterior derivative in terms of Lie derivatives. Proc. Amer. Math. Soc.5, 902–908 (1954)
Poincaré, H.: Les méthodes nouvelles de la méchanique céleste. T. 1. Paris: Gauthier-Villars, 1892
Siegel, C.L., Moser, J.K.: Lectures on celestial mechanics. Berlin, Heidelberg, New York: Springer, 1971
Souriau, J.M.: Structure des systèmes dynamiques. Paris: Dunod, 1970
Turiel, F.J.: Classification locale d'un couple de formes symplectiques Poisson-compatibles. C.R. Acad. Sci. Paris308, S. I, 575–578 (1989)
Vilasi, G.: New aspects of complete integrability. In: Integrable systems and quantum groups. Singapore, World Scientific Publishing Company, 1992, pp. 126–146
Ten Eikelder, H.M.M.: On the local structures of recursion operators for symmetries. Proc. Kon. Ned. Akad. Amsterdam89, 389–403 (1986)
Author information
Authors and Affiliations
Additional information
Communicated by M. Jimbo
Supported by NSERC grant OGPIN 337.
Rights and permissions
About this article
Cite this article
Bogoyavlenskij, O.I. Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures. Commun.Math. Phys. 180, 529–586 (1996). https://doi.org/10.1007/BF02099623
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02099623