Advertisement

Communications in Mathematical Physics

, Volume 174, Issue 2, pp 295–318 | Cite as

Reduction of constrained mechanical systems and stability of relative equilibria

  • Charles-Michel Marle
Article

Abstract

A mechanical system with perfect constraints can be described, under some mild assumptions, as a constrained Hamiltonian system(M, Ω, H, D, W): (M, Ω) (thephase space) is a symplectic manifold,H (theHamiltonian) a smooth function onM, D (theconstraint submanifold) a submanifold ofM, andW (theprojection bundle) a vector sub-bundle ofT D M, the reduced tangent bundle alongD. We prove that when these data satisfy some suitable conditions, the time evolution of the system is governed by a well defined differential equation onD. We define constrained Hamiltonian systems with symmetry, and prove a reduction theorem. Application of that theorem is illustrated on the example of a convex heavy body rolling without slipping on a horizontal plane. Two other simple examples show that constrained mechanical systems with symmetry may have an attractive (or repulsive) set of relative equilibria.

Keywords

Neural Network Manifold Complex System Time Evolution Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R., Marsden, J.E., Foundations of mechanics. Reading, MA: Benjamin, 1978Google Scholar
  2. 2.
    Albert, C.: Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact. J. Geom. and Phys.6, 627–649 (1989)Google Scholar
  3. 3.
    Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. In: Dynamical systems III, Arnold, V.I. (ed.), Berlin, Heidelberg, New York: Springer, 1988Google Scholar
  4. 4.
    Bates, L., Sniatycki, J.: Nonholonomic reduction. Rep. Math. Phys.32, 99–115 (1991)Google Scholar
  5. 5.
    Benenti, S.: Geometrical aspects of the dynamics of non-holonomic systems. Journées relativistes, Chambéry, 14–16 May 1987Google Scholar
  6. 6.
    Cardin, F. and Zanzotto, G.: On constrained mechanical systems: d'Alembert's and Gauss' principles. J. Math. Phys.30, 7, 1473–1479 (1989)Google Scholar
  7. 7.
    Dazord, P.: Mécanique hamiltonienne en présence de contraintes. Illinois J. Math.38, 1, 148–175 (1994)Google Scholar
  8. 8.
    Godbillon, C.: Géométrie différentielle et mécanique analytique. Paris: Hermann, 1969Google Scholar
  9. 9.
    Karapetian, A.V.: On the problem of steady motions stability of nonholonomic systems. Prikl. Matem. Mekhan.44, 3, 418–426 (1980) (in Russian). English translation: PMM USSR44, 295–300 (1980)Google Scholar
  10. 10.
    Karapetian, A.V.: On realizing nonholonomic constraints by viscous friction forces and celtic stones stability. Prikl. Matem. Mekhan.45, 1, 42–51 (1981) (in Russian). English translation: PMM USSR45, 30–36 (1981)Google Scholar
  11. 11.
    Koiller, J.: Reduction of some classical non-holonomic systems with symmetry. Arch. Rational Mech. Anal.118, 133–148 (1992)Google Scholar
  12. 12.
    Krishnaprasad, P.S.: Eulerian many-body problems. In: Dynamics and control of multi-body systems. Marsden, J.E., Krishnaprasad, P.S., Simo, J.C. (eds.), Contemporary Mathematics97, Providence, RI: American Mathematical Society, 1989 pp. 187–208Google Scholar
  13. 13.
    Krishnaprasad, P.S., Yang, R.: Geometric phase, anholonomy, and optimal movement. Proc. of the 1991 IEEE International conference on Robotics and Automation3, 2185–2189 (1991)Google Scholar
  14. 14.
    Kummer, M.: On the construction of the reduced phase space of a Hamiltonian system with symmetry. Indiana Univ. Math. J.30, 2 281–291 (1981)Google Scholar
  15. 15.
    Libermann, P., Marle, C.-M.: Symplectic geometry and analytical mechanics. Dordrecht: D. Reidel Publishing Company, 1987Google Scholar
  16. 16.
    Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Differ. Geom.12, 253–300 (1977)Google Scholar
  17. 17.
    Markeev, A.P.: On the dynamics of a solid on an absolutely rough plane. Prikl. Matem. Mekhan.47, 4, 575–582 (1983) (in Russian). English translation. PMM USSR47, 4, 473–478 (1983)Google Scholar
  18. 18.
    Marle, C.-M.: Sur la géométrie des systèmes mécaniques à liaisons actives. C. R. Acad. Sci. Paris311, 1, 839–845 (1990)Google Scholar
  19. 19.
    Marle, C.-M.: Géométrie des systèmes mécaniques à liaisons actives. In: Symplectic geometry and mathematical physics, Donato, P., Duval, C., Elhadad, J., Tuynman, G.M. (eds.), Boston: Birkhäuser, 1991, pp. 260–287Google Scholar
  20. 20.
    Marsden, J.E.: Lectures on mechanics. London Math. Soc. Lect. Notes Series174, Cambridge: Cambridge University Press, 1992Google Scholar
  21. 21.
    Marsden, J.E. and Ratiu, T.S.: Reduction of Poisson manifolds. Lett. Math. Phys.11, 161–170 (1986)Google Scholar
  22. 22.
    Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys.5, 121–130 (1974)Google Scholar
  23. 23.
    Massa, E., Pagani, E.: Classical dynamics of non-holonomic systems: A geometric approach. Ann. Inst. Henri Poincaré, Physique Théor.55, 1, 511–544 (1991)Google Scholar
  24. 24.
    Meyer, K.R.: Symmetry and integrals in mechanics. In: Dynamical systems, Peixoto, M. (ed.), New York: Academic Press, 1973, pp. 259–273Google Scholar
  25. 25.
    Mikami, K.: Reduction of local Lie algebra structures. Proc. Am. Math. Soc.105, 3, 686–691 (1989)Google Scholar
  26. 26.
    Montgomery, R., Marsden, J.E., Ratiu, T.: Gauged Lie-Poisson structures. In: Fluids and plasmas: Geometry and dynamics. Contemporary mathematics28, Providence, RI: Am. Math. Soc., 1984, pp. 101–114Google Scholar
  27. 27.
    Nunes da Costa, J.: Réduction des varietés de Jacobi. C. R. Acad. Sc. Paris308, 1, 101–103 (1989)Google Scholar
  28. 28.
    Pascal, M.: The asymptotic solution of the equations of motion of the celtic stone. Prikl. Matem. Mekhan.47, 2, 321–329 (1983) (in Russian). English translation: PMM USSR47, 2, 269–276 (1984)Google Scholar
  29. 29.
    Souriau, J.-M.: Structure des systèmes dynamiques. Paris: Dunod, 1969Google Scholar
  30. 30.
    Sternberg, S.: On minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field. Proc. Nat. Acad. Sci. USA74, 5253–5254 (1977)Google Scholar
  31. 31.
    Tulczyjew, W.M.: Sur la différentielle de Lagrange. C.R. Acad. Sc. Paris280, A, 1295–1298 (1975)Google Scholar
  32. 32.
    Tulczyjew, W.M.: Geometric formulations of physical theories. Napoli, Italy: Bibliopolis, 1989Google Scholar
  33. 33.
    Vershik, A.M.: Classical and non-classical dynamics with constraints. In: Global analysis, Studies and Applications 1, Yu. G. Borisovich and Yu. E. Gliklikh, ed., Lecture Notes in Math.1108, Berlin: Springer-Verlag, 1984, pp. 278–301Google Scholar
  34. 34.
    Vershik, A.M., Faddeev, L.D.: Lagrangian mechanics in invariant form. Sel. Math. Sov.1, 339–350 (1981)Google Scholar
  35. 35.
    Vershik, A.M., Gershkovich, Y.Ya.: Nonholonomic dynamical systems, geometry of distributions and variational problems. In: Dynamical systems VII, Arnold, V.I. and Novikov, S.P. (eds.), Berlin, Heidelberg, New York: Springer, 1994, pp. 1–81Google Scholar
  36. 36.
    Walker, G.T.: On the curious dynamical properties of celts. Proceedings of the Cambridge Philosophical Society, vol.8, years 1892-1895, p. 305Google Scholar
  37. 37.
    Walker, G.T.: On a dynamical top. Quart. J. Pure and Appl. Math.28, 175–184 (1896)Google Scholar
  38. 38.
    Walker, J.: The mysterious “rattleback”: A stone that spins in one direction and then reverses. Scientific American241, 4, 172–184 (1979)Google Scholar
  39. 39.
    Weinstein, A.: A universal phase space for particles in Yang-Mills field. Letters Math. Phys.2, 417–420 (1978)Google Scholar
  40. 40.
    Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom.18, 523–557 (1983) and22, 255 (1985)Google Scholar
  41. 41.
    Weinstein, A.: Stability of Poisson-Hamilton equilibria. In: Fluids and plasmas: Geometry and dynamics, Contemporary Mathematics28, Providence RI: Am. Math. Soc., 1984, pp. 3–13Google Scholar
  42. 42.
    Whittaker, E.T.: A treatise on the analytical dynamics of particles and rigid bodies. Cambridge: Cambridge University Press, 1904 (fourth edition 1937, reissued with Foreword 1988)Google Scholar
  43. 43.
    Woodhouse, N.: Geometric quantization. Oxford: Oxford University Press, 1980Google Scholar
  44. 44.
    Yang, R.: Nonholonomic geometry, Mechanics and Control. Ph.D. Dissertation, University of Maryland, 1992Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Charles-Michel Marle
    • 1
  1. 1.Institut de Mathématiques de JussieuUniversité Pierre et Marie CurieParis cedex 05France

Personalised recommendations