Skip to main content
Log in

Toeplitz algebras and Rieffel deformations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a representation theorem for Toeplitz operators on the Segal-Bargmann (Fock) space ofC n whose “symbols” have uniform radial limits. As an application of this result, we show that Toeplitz algebras on the open ball inC n are “strict deformation quantizations”, in the sense of M. Rieffel, of the continuous functions on the corresponding closed ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [B] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure and Appl. Math.14, 187–214 (1961)

    Google Scholar 

  • [BC1] Berger, C.A., Coburn, L.A.: Toeplitz operators and quantum mechanics. J. Funct. Anal.68, 273–299 (1986)

    Google Scholar 

  • [BC2] Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal-Bargmann space. Trans. Am. Math. Soc.301, 813–829 (1987)

    Google Scholar 

  • [BC3] Berger, C.A., Coburn, L.A.: Heat flow and Berezin-Toeplitz estimates. Am. J. Math.116, 563–590 (1994)

    Google Scholar 

  • [BDF] Brown, L.G., Douglas, R.G., Fillmore, P.A.: Extensions ofC *-algebras andK-homology. Ann. Math.105, 265–324 (1977)

    Google Scholar 

  • [BLU] Borthwick, D., Lesniewski, A., Upmeier, H.: Non-perturbative deformation quantization of Cartan domains. J. Funct. Anal.113, 153–176 (1993)

    Google Scholar 

  • [C1] Coburn, L.A.: Singular integral operators and Toeplitz operators on odd spheres. Indiana Univ. Math. J.23, 433–439 (1973)

    Google Scholar 

  • [C2] Coburn, L.A.: Deformation estimates for the Berezin-Toeplitz quantization. Commun. Math. Phys.149, 415–424 (1992)

    Google Scholar 

  • [F] Folland, G.B.: Harmonic analysis in phase space. Annals of Math. Studies. Princeton NJ, Princeton Univ. Press, 1989

    Google Scholar 

  • [G] Guillemin, V.: Toeplitz operators inn-dimensions. Int. Eq. and Op. Thy.7, 145–205 (1984)

    Google Scholar 

  • [H] Howe, R.: Quantum mechanics and partial differential equations. J. Funct. Anal.38, 188–254 (1980)

    Google Scholar 

  • [KL] Klimek, S., Lesniewski, A.: Quantum Riemann surfaces I, The unit disc. Commun. Math. Phys.146, 103–122 (1992)

    Google Scholar 

  • [R] Rieffel, M.A.: Deformation quantization for actions ofR d Memoirs of the Am. Math. Soc.106, No. 506 (1993)

    Google Scholar 

  • [S] Sheu, A.J.: Quantization of PoissonSU(2) and its Poisson homogeneous space-the 2-sphere. Commun. Math. Phys.135, 217–232 (1991)

    Google Scholar 

  • [V] Venugopalkrishna, U.: Fredholm operators associated with strongly pseudoconvex domains inC n. J. Funct. Anal.9, 349–373 (1972)

    Google Scholar 

  • [WW] Whittaker, E.T., Watson, G.N.: Modern Analysis. London: Cambridge Univ. Press, 1940

    Google Scholar 

  • [X] Xia, J.: Geometric invariants of the quantum Hall effect. Commun. Math. Phys.119, 29–50 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coburn, L.A., Xia, J. Toeplitz algebras and Rieffel deformations. Commun.Math. Phys. 168, 23–38 (1995). https://doi.org/10.1007/BF02099582

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099582

Keywords

Navigation