Advertisement

Communications in Mathematical Physics

, Volume 147, Issue 1, pp 1–23 | Cite as

Intersection theory on the moduli space of curves and the matrix airy function

  • Maxim Kontsevich
Article

Abstract

We show that two natural approaches to quantum gravity coincide. This identity is nontrivial and relies on the equivalence of each approach to KdV equations. We also investigate related mathematical problems.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Modulus Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AvM] Adler, M., van Moerbeke, P.: TheW p-gravity version of the Witten-Kontsevich model. Commun. Math. Phys. (to appear)Google Scholar
  2. [BIZ] Bessis, D., Itzykson, C., Zuber, J.-B.: Qunatum field theory techniques in graphical enumeration. Adv. Appl. Math.1, 109–157 (1980)CrossRefGoogle Scholar
  3. [BK] Brézin, E., Kazakov, V.: LettB236, 144 (1990)CrossRefGoogle Scholar
  4. [DS] Douglas, M., Shenker, S.: Nucl. Phys.B335, 635 (1990)CrossRefGoogle Scholar
  5. [GM] Gross, D., Migdal, A.: Phys. Rev. Lett.64, 127 (1990)CrossRefGoogle Scholar
  6. [H] Harer, J.: The cohomology of the moduli space of curves. Lecture Notes of mathematics, vol. 1337. Berlin, Heidelberg, New York: Springer, pp. 138–221Google Scholar
  7. [HZ] Harer, J., Zagier, D.: The Euler characteristic of the moduli space of curves. Inv. Math.85, 457–485 (1986)CrossRefGoogle Scholar
  8. [HC] Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math.79, 87–120 (1957)Google Scholar
  9. [IZ1] Itzykson, C., Zuber, J.-B.: J. Math. Phys.21, 411–421 (1980)CrossRefGoogle Scholar
  10. [IZ2] Itzykson, C., Zuber, J.-B.: Commun. Math. Phys.134, 197–207 (1990)Google Scholar
  11. [KS] Kac, V., Schwarz, A.: LettB257, 329 (1991)CrossRefGoogle Scholar
  12. [KMMMZ] Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Zabrodin, A.: Unification of all string models withc<1, FIAN/TD-9/91 and ITEP-M-8/91Google Scholar
  13. [K1] Kontsevich, M.: Intersection theory on the moduli space of curves. Funct. Anal. and Appl.25 (2), 123–128 (1991)CrossRefGoogle Scholar
  14. [K2] Kontsevich, M. Intersection theory on the moduli space of curves and the matrix Airy function. 30. Arbeitstagung Bonn. Preprint MPI/91-47Google Scholar
  15. [KM] Kontsevich, M., Mulase, M.: In preparationGoogle Scholar
  16. [Mh] Mehta, M. L.: Random matrices in nuclear physics and number theory. Contemporary Math.50, 295–309 (1986)Google Scholar
  17. [M] Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Arithmetic and geometry, vol. II. Boston: Birkhäuser 1983Google Scholar
  18. [P1] Penner, R. C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys.113, 299–339 (1987)CrossRefGoogle Scholar
  19. [P2] Penner, R. C.: Perturbative series and the moduli space of Riemann surfaces. J. Diff. Geom.27, 35–53 (1988)Google Scholar
  20. [P3] Penner, R. C.: The Poincaré dual of the Weil-Petersson Kähler two-form. Preprint, October 1991Google Scholar
  21. [SW] Segal, G. B., Wilson, G.: Loop groops and equations of KdV type. Publ. Math. I.H.E.S.61, 5–65 (1985)Google Scholar
  22. [S] Strebel, K.: Quadratic differentials. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  23. [W1] Witten, E.: Two dimensional gravity and intersection theory on moduli space. Surveys in Diff. Geom.1, 243–310 (1991)Google Scholar
  24. [W2] Witten, E.: On the Kontsevich model and other models of two dimensional gravity. IAS preprint HEP-91/24Google Scholar
  25. [W3] Witten, E.: TheN matrix model and gauged WZW models. IAS preprint HEP-91/26Google Scholar
  26. [Z] Zwiebach, B.: How covariant closed string theory solves a minimal area problem. Commun. Math. Phys.136, 83–118Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Maxim Kontsevich
    • 1
  1. 1.Max-Planck Institut für MathematikBonn 1Federal Republic of Germany

Personalised recommendations