Abstract
We prove that for any finite set of generalized valence bond solid (GVBS) states of a quantum spin chain there exists a translation invariant finite-range Hamiltonian for which this set is the set of ground states. This result implies that there are GVBS models with arbitrary broken discrete symmetries that are described as combinations of lattice translations, lattice reflections, and local unitary or anti-unitary transformations. We also show that all GVBS models that satisfy some natural conditions have a spectral gap. The existence of a spectral gap is obtained by applying a simple and quite general strategy for proving lower bounds on the spectral gap of the generator of a classical or quantum spin dynamics. This general scheme is interesting in its own right and threfore, although the basic idea is not new, we present it in a system-independent setting. The results are illustrated with a number of examples.
Similar content being viewed by others
References
Affleck, I.: Large-n limit of SU(n) quantum “spin” chains. Phys. Rev. Lett.54, 966–969 (1985)
Affleck, I.: Exact results on the dimerization transition in SU(n) antiferromagnetic chains. J. Phys.: Condens. Matter2, 405–415 (1990)
Kennedy, T., Tasaki, H.: HiddenZ 2×Z 2 symmetry breaking in Haldane gap antiferromagnets. Phys. Rev.B45, 304–307 (1992)
Dagotto, E.: The t-J and frustrated Heisenberg model: a status report on numerical studies. Int. J. Mod. PhysB5, 907–935 (1991)
Wen, X.G., Wilczeck, F., Zee, A.: Chiral spin states and superconductivity. Phys. RevB39, 11413–11423 (1989)
Long, M.W., Siak, S.: An exact solution to a spin-1 chain model. J. Phys.: Condens. Matter5, 5811–5828 (1993)
Affleck, I., Arovas, D.P., Marston, J.B., Rabson, D.A.: SU(2n) Quantum Antiferromagnets with Exact C-Breaking Ground States. Nucl. Phys.B366, 467–506 (1991)
Affleck, I., Haldane, F.D.M.: Critical theory of quantum spin chains. Phys. Rev.B36, 5291–5300 (1987)
Affleck, I.: Quantum spin chains and the Haldane gap. J. Phys.: Condens. Matter1, 3047–3072 (1989)
Sørensen, E.S., Affleck, I.: Large-Scale Numerical Evidence for Bose Condensation in theS=1 Antiferromagnetic Chain in a Strong Field. Phys. Rev. Lett.71, 1633–1636 (1993)
Affleck, I., Lieb, E.H., Kennedy, T., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett.59, 799–802 (1987)
Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bongrground states in isotropic quantum antiferromagnets. Commun. Math. Phys.115, 477–528 (1988)
Fannes, M., Nachtergaele, B., Werner, R.F.: Valence bond states on quantum spin chains as ground states with spectral gap. J. Phys. A: Math. Gen.24 L185-L190 (1991)
Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely Correlated States on Quantum Spin Chains. Commun. Math. Phys.144, 443–490 (1992)
Arovas, D.P., Auerbach, A., Haldane, F.D.M.: Extended Heisenberg models of antiferromagnetism: analogies to the fractional quantum Hall effect. Phys. Rev. Lett.60, 531–534 (1988)
Knabe, S.: Energy gaps and elementary excitations for Certain VBS-Quantum Antiferromagnets. J. Stat. Phys.52, 627–638 (1988)
Botet, R., Julien, R.: Ground-state properties of a spin-1 antiferromagnetic chain. Phys. Rev.B27, 613–615 (1983)
Kolb, M., Botet, R., Julien, J.: Comparison of ground-state properties for odd half-integer and integer spin antiferromagnetic Heisenberg chains. J. Phys. A: Math. Gen.16, L673-L677 (1983)
Parkinson, J.B., Bonner, J.C.: Spin chains in a field: Crossover from quantum to classical behavior. Phys. Rev.B32, 4703–4724 (1985)
Nightingale, M.P., Blöte, H.W.: Gap of the linear spin-1 Heisenberg antiferromagnet: a Monte Carlo calculation. Phys. Rev.B33, 659–661 (1986)
Sólyom, J.: Competing bilinear and biquadratic exchange couplings in spin-1 Heisenberg chains. Phys. Rev.B36, 8642–8648 (1987)
Chang, K., Affleck, I., Hayden, G.W., Soos, Z.G.: A study of the bilinear-biquadratic spin 1 antiferromagnetic chain using the valence-bond basis. J. Phys.C1, 153–167 (1989)
Kennedy, T.: Exact diagonalisations of open spin-1 chains. J. Phys.: Cond. Matter2, 5737–5745 (1990)
White, S.R., Huse, D.A.: Numerical Renormalization Group Study of Low-lying Eigenstates of the AntiferromagneticS=1 Heisenberg Chain. Phys. Rev.B48, 3844–3852 (1993)
White, S.R.: Density Matrix Formutation for Quantum Renormalization Groups. Phys. Rev. Lett.69, 2863–2866 (1992)
White, S.R.: Density Matrix Formulation for Quantum Renormalization Groups. Phys. Rev.B48, 10345–10456 (1993)
Kennedy, T.: Nonpositive matrix elements for Hamiltonians of spin 1 chains. J. Phys.: Cond. Matter6, 8015–8022 (1994)
Caspers, W.J., Magnus, W.: Some exact excited states in a linear antiferromagnetic spin system. Phys. Lett.88A, 103–105 (1982)
Shastry, B.S., Sutherland, B.: Excitation Spectrum of a Dimerized Next-Neighbor Antiferromagnetic Chain. Phys. Rev. Lett.47 964–967 (1981)
Holley, R.: Rapid convergence to equilibrium in one-dimensional stochastic Ising models. Ann. Prob.13, 72–89 (1985)
Aizenman, M., Holley R.: Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin-Shlosman regime. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems, H. Kesten (Ed.), Berlin-Heidelberg-New York: Springer Verlag, 1987, pp. 1–11
Lu, S.-L., Yau, H.T.: Spectral gap and logarithmic Sobolev Inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys.156, 399–433 (1993)
Martinelli, F., Olivieri, E.: Finite volume mixing conditions for lattice spin systems and exponential approach to equilibrium of Glauber dynamics. Parts I and II, Commun. Math. Phys.161, 447–486, 487–514 (1994)
Holley, R.A., Stroock, D.W.: Logarithmic Sobolev Inequalities and stochastic Ising models. J. Stat. Phys.46, 1159–1194 (1987)
Holley, R.A., Stroock, D.A.: Uniform andL 2 convergence in one-dimensional stochastic Ising models. Commun. Math. Phys.123, 85–93 (1989)
Zegarlinski, B.: Gibbsian description and description by stochastic dynamics in the statistical mechanics of lattice spin systems with finite range interactions. In: Proceedings of the Third International Conference on Stochastic Processes, Physics, and Geometry, S. Albeverio et al. (Eds), Singapore: World Scientific, 1993
Holley, R.: Rapid convergence to equilibrium in ferromagnetic stochastic Ising models. Resenhas IME-USP1, 131–149 (1993)
Zegarlinski, B.: Log-Sobolev inequlaities for infinite one-dimensional lattice systems. Commun. Math. Phys.133, 147–162 (1990)
Stroock, D.W., Zegarlinski, B.: The logarithmic Sobolev inequality for continuous spin systems on a lattice. J. Funct. Anal.104, 299–326 (1992)
Stroock, D.W., Zegarlinski, B.: The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Commun. Math. Phys.144, 303–323 (1992)
Stroock, D.W., Zegarlinski, B.: The logarithmic Sobolev inequality for discrete spin systems on a lattice. Commun. Math. Phys.149, 175–193 (1992)
Haldane, F.D.M.: The Hierarchy of Fractional States and Numerical Studies. In R.E. Prange, S.M. Girvin (eds.). The Quantum Hall Effect New York: Springer Verlag, 1987, pp. 303–352
Fröhlich, J., Studer, U.M.: U(1)×SU(2) gauge invariance of non-relativistic quantum mechanics, and generalized Hall effects. Commun. Math. Phys.148, 553–600 (1992)
Fannes, M., Nachtergaele, B., Werner, B.F.: Exact Ground States of Quantum Spin Chains Europhys. Lett.10, 633–637 (1989)
Werner, R.F.: Remarks on a quantum state extension problem. Lett. Math. Phys.19, 319–326 (1990)
Haldane, F.D.M.:Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett.93A, 464–468 (1983)
Affleck, I., Lieb, E.H.: A proof of part of Haldane's conjecture on quantum spin chains. Lett. Math. Phys.12, 57–69 (1986)
Majumdar, C.K.: Antiferromagnetic model with known ground state. J. Phys. C: Cond Matt.3, 911–915 (1970)
Majumdar, C.K., Ghosh, D.K.: On next nearest-neighbor interaction in linear chain, I and II. J. Math. Phys.10, 1388–1398, and 1399–1402 (1969)
Klein, D.J.: Variational localized-site cluster expansions. IX. Many-body valence-bond theory. Phys. Rev.B19, 870–876 (1979)
van den Broeck, P.M.: Exact value of the ground state energy of the linear antiferromagnetic Heisenberg chain with nearest and next-nearest neighbor interactions. Phys. Lett.77A, 261–262 (1980)
Klein, D.J.: Exact ground states for a class of antiferromagnetic Heisenberg models with short range interactions. J. Phys. A: Math. Gen.15, 661–671 (1982)
Caspers, W.J.: Exact ground states for a class of linear antiferromagnetic spin systems. Physica115A, 275–280 (1982)
Caspers, W.J., Magnus, W.: Exact ground states for a class of linear quantum spin systems. Physica119A, 291–294 (1983)
Fannes, M., Nachtergaele, B., Werner, B.F.: Entropy Estimates for Finitely Correlated States. Ann. Inst. H. Poincaré57, 259–277 (1992)
Bose, I.: Exact ground and excited states of an antiferromagnetic quantum spin model. J. Phys.: Condens. Matt.1, 9267–9271 (1989)
Klümper, A., Schadschneider, A., Zittartz, J.: Ground state properties of a generalized VBS-model. Z. Phys. B-Condensed Matter87, 281–287 (1992)
Kennedy, T., Lieb, E.H., Tasaki, H.: A two-dimensional isotropic quantum antiferromagnet with unique disordered ground state. J. Stat. Phys.53, 383–415 (1988)
Chayes, J., Chayes, L., Kivelson, S.: Valence bond ground states in a frustrated two-dimensional spin 1/2 Heisenberg antiferromagnet. Commun. Math. Phys.123, 53–83 (1989)
Kirillov, A.N., Korepin, V.E.: The resonating valence bond in quasicrystals. Leningrad Math. J.1, 343–377 (1990)
Long, M.W., Siak, S.: An exactly soluble two-dimensional quantum mechanical Heisenberg model: quantum fluctuations versus magnetic order. J. Phys.: Condens. Matter2, 10321–10341 (1990)
Bose, I.: Two-dimensional spin models with resonating valence bond ground states. J. Phys.: Consdens. Matter2, 5479–5482 (1990)
Bose, L.: Frustrated spin 1/2-model in two dimensions with a known ground state. Phys. Rev.B44, 443–445 (1991)
Bose, I.: Antiferromagnetic spin models in two dimensions with known ground states. Phys. Rev.B45, 13072–13075 (1992)
Freitag, W.-D., Müller-Hartmann, E.: Complete analysis of two-spin correlations of valence bond solid chains for all integer spins. Z. Phys. B Condensed Matter83, 381–390 (1991)
Freitag, W.-D., Müller-Hartmann, E.; Spin correlations of inhomogeneous valence bond solid chains. Z. Phys. B Condensed Matter88, 279–282 (1992)
Accardi, L.: Topics in Quantum Probability. Physics Rep.77, 169–192 (1981)
Accardi, L., Frigerio, A.: Markovian Cocycles. Proc. R. Ir. Acad.83A (2), 251–263 (1983)
Fannes, M., Nachtergaele, B., Werner, R.F.: Abundance of Translation Invariant Pure States on Quantum Spin Chains Lett. Math. Phys.25, 249–258 (1992)
Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated pure states. J. Funct. Anal.120, 511–534 (1994)
Monti, F., Sütő, A.: Spin 1/2 Heisenberg model on Δ trees. Phys. Lett.156, 197–200 (1991)
Monti, F., Sütő, A.: Heisenberg Antiferromagnet on Triangulated Trees. Helv. Phys. Acta65, 560–595 (1992)
Gottstein, C.-T., Werner, R.F.: Ground states of the infinite q-deformed Heisenberg ferromagnet. Preprint archived as cond-mat/9501123
Albanese, C.: Unitary Dressing Transformations and Exponential Decay Below Threshold for Quantum Spin Systems. Part I–II. Commun. Math. Phys.134, 1–27 (1990)
Albanese, C.: Unitary Dressing Transformations and Exponential Decay Below Threshold for Quantum Spin Systems. Part III–IV. Commun. Math. Phys.134, 237–272 (1990)
Kennedy, T., Tasaki, H.: Hidden Symmetry Breaking and the Haldane Phase in S=1 Quantum Spin Chains. Commun. Math. Phys.147, 431–484 (1992)
Matsui, T.: Purification and Uniqueness of Quantum Gibbs States. Commun. Math. Phys.162, 321–332 (1994)
Datta, N., Fernández, R., Fröhlich, J.: Low temperature phase diagrams of quantum lattice systems I. Texas archive 95–288
Koma, T., Tasaki, H.: Symmetry Breaking and Finite-Size Effects in Quantum Many-Body Systems. J. Stat. Phys.76, 745–803 (1994)
Werner, R.F.: Finitely correlated pure states. In: M. Fannes, C. Maes, and A. Verbeure (eds), On three levels; micro-, meso, and macro-approaches in physics. New York: Plenum, 1994
Hiai, F., Petz, D.: Entropy Density for Algebraic States. J. Funct. Analysis125, 287–308 (1994)
Olivieri, E., Picco, P.: Cluster Expansion ford-Dimensional Lattice Systems and Finite-Volume Factorization Properties. J. Stat. Phys.59, 221–256 (1990)
Lange, C., Klümper, A., Zittartz, J.: Exact ground states for antiferromagnetic spin-one chains with nearest and next-nearest neighbour interactions. Preprint
den Nijs, M., Rommelse, K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. RevB40, 4709 (1989)
Chen, J.-Q.: Group Representation Theory for Physicists, Singapore: World Scientific, 1989
Author information
Authors and Affiliations
Additional information
Communicated by D. Brydges
Copyright © 1994 by the author.FFaithful reproduction of this article by any means is permitted for non-commercial purposes.
Rights and permissions
About this article
Cite this article
Nachtergaele, B. The spectral gap for some spin chains with discrete symmetry breaking. Commun.Math. Phys. 175, 565–606 (1996). https://doi.org/10.1007/BF02099509
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02099509