Communications in Mathematical Physics

, Volume 175, Issue 3, pp 565–606 | Cite as

The spectral gap for some spin chains with discrete symmetry breaking

  • Bruno Nachtergaele


We prove that for any finite set of generalized valence bond solid (GVBS) states of a quantum spin chain there exists a translation invariant finite-range Hamiltonian for which this set is the set of ground states. This result implies that there are GVBS models with arbitrary broken discrete symmetries that are described as combinations of lattice translations, lattice reflections, and local unitary or anti-unitary transformations. We also show that all GVBS models that satisfy some natural conditions have a spectral gap. The existence of a spectral gap is obtained by applying a simple and quite general strategy for proving lower bounds on the spectral gap of the generator of a classical or quantum spin dynamics. This general scheme is interesting in its own right and threfore, although the basic idea is not new, we present it in a system-independent setting. The results are illustrated with a number of examples.


Neural Network Nonlinear Dynamics Symmetry Breaking General Scheme Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Affleck, I.: Large-n limit of SU(n) quantum “spin” chains. Phys. Rev. Lett.54, 966–969 (1985)CrossRefGoogle Scholar
  2. 2.
    Affleck, I.: Exact results on the dimerization transition in SU(n) antiferromagnetic chains. J. Phys.: Condens. Matter2, 405–415 (1990)CrossRefGoogle Scholar
  3. 3.
    Kennedy, T., Tasaki, H.: HiddenZ 2×Z 2 symmetry breaking in Haldane gap antiferromagnets. Phys. Rev.B45, 304–307 (1992)CrossRefGoogle Scholar
  4. 4.
    Dagotto, E.: The t-J and frustrated Heisenberg model: a status report on numerical studies. Int. J. Mod. PhysB5, 907–935 (1991)CrossRefGoogle Scholar
  5. 5.
    Wen, X.G., Wilczeck, F., Zee, A.: Chiral spin states and superconductivity. Phys. RevB39, 11413–11423 (1989)CrossRefGoogle Scholar
  6. 6.
    Long, M.W., Siak, S.: An exact solution to a spin-1 chain model. J. Phys.: Condens. Matter5, 5811–5828 (1993)CrossRefGoogle Scholar
  7. 7.
    Affleck, I., Arovas, D.P., Marston, J.B., Rabson, D.A.: SU(2n) Quantum Antiferromagnets with Exact C-Breaking Ground States. Nucl. Phys.B366, 467–506 (1991)CrossRefGoogle Scholar
  8. 8.
    Affleck, I., Haldane, F.D.M.: Critical theory of quantum spin chains. Phys. Rev.B36, 5291–5300 (1987)CrossRefGoogle Scholar
  9. 9.
    Affleck, I.: Quantum spin chains and the Haldane gap. J. Phys.: Condens. Matter1, 3047–3072 (1989)CrossRefGoogle Scholar
  10. 10.
    Sørensen, E.S., Affleck, I.: Large-Scale Numerical Evidence for Bose Condensation in theS=1 Antiferromagnetic Chain in a Strong Field. Phys. Rev. Lett.71, 1633–1636 (1993)CrossRefGoogle Scholar
  11. 11.
    Affleck, I., Lieb, E.H., Kennedy, T., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett.59, 799–802 (1987)CrossRefGoogle Scholar
  12. 12.
    Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bongrground states in isotropic quantum antiferromagnets. Commun. Math. Phys.115, 477–528 (1988)CrossRefGoogle Scholar
  13. 13.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Valence bond states on quantum spin chains as ground states with spectral gap. J. Phys. A: Math. Gen.24 L185-L190 (1991)CrossRefGoogle Scholar
  14. 14.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely Correlated States on Quantum Spin Chains. Commun. Math. Phys.144, 443–490 (1992)Google Scholar
  15. 15.
    Arovas, D.P., Auerbach, A., Haldane, F.D.M.: Extended Heisenberg models of antiferromagnetism: analogies to the fractional quantum Hall effect. Phys. Rev. Lett.60, 531–534 (1988)CrossRefGoogle Scholar
  16. 16.
    Knabe, S.: Energy gaps and elementary excitations for Certain VBS-Quantum Antiferromagnets. J. Stat. Phys.52, 627–638 (1988)CrossRefGoogle Scholar
  17. 17.
    Botet, R., Julien, R.: Ground-state properties of a spin-1 antiferromagnetic chain. Phys. Rev.B27, 613–615 (1983)CrossRefGoogle Scholar
  18. 18.
    Kolb, M., Botet, R., Julien, J.: Comparison of ground-state properties for odd half-integer and integer spin antiferromagnetic Heisenberg chains. J. Phys. A: Math. Gen.16, L673-L677 (1983)CrossRefGoogle Scholar
  19. 19.
    Parkinson, J.B., Bonner, J.C.: Spin chains in a field: Crossover from quantum to classical behavior. Phys. Rev.B32, 4703–4724 (1985)CrossRefGoogle Scholar
  20. 20.
    Nightingale, M.P., Blöte, H.W.: Gap of the linear spin-1 Heisenberg antiferromagnet: a Monte Carlo calculation. Phys. Rev.B33, 659–661 (1986)CrossRefGoogle Scholar
  21. 21.
    Sólyom, J.: Competing bilinear and biquadratic exchange couplings in spin-1 Heisenberg chains. Phys. Rev.B36, 8642–8648 (1987)CrossRefGoogle Scholar
  22. 22.
    Chang, K., Affleck, I., Hayden, G.W., Soos, Z.G.: A study of the bilinear-biquadratic spin 1 antiferromagnetic chain using the valence-bond basis. J. Phys.C1, 153–167 (1989)Google Scholar
  23. 23.
    Kennedy, T.: Exact diagonalisations of open spin-1 chains. J. Phys.: Cond. Matter2, 5737–5745 (1990)CrossRefGoogle Scholar
  24. 24.
    White, S.R., Huse, D.A.: Numerical Renormalization Group Study of Low-lying Eigenstates of the AntiferromagneticS=1 Heisenberg Chain. Phys. Rev.B48, 3844–3852 (1993)CrossRefGoogle Scholar
  25. 25.
    White, S.R.: Density Matrix Formutation for Quantum Renormalization Groups. Phys. Rev. Lett.69, 2863–2866 (1992)CrossRefGoogle Scholar
  26. 26.
    White, S.R.: Density Matrix Formulation for Quantum Renormalization Groups. Phys. Rev.B48, 10345–10456 (1993)CrossRefGoogle Scholar
  27. 27.
    Kennedy, T.: Nonpositive matrix elements for Hamiltonians of spin 1 chains. J. Phys.: Cond. Matter6, 8015–8022 (1994)CrossRefGoogle Scholar
  28. 28.
    Caspers, W.J., Magnus, W.: Some exact excited states in a linear antiferromagnetic spin system. Phys. Lett.88A, 103–105 (1982)Google Scholar
  29. 29.
    Shastry, B.S., Sutherland, B.: Excitation Spectrum of a Dimerized Next-Neighbor Antiferromagnetic Chain. Phys. Rev. Lett.47 964–967 (1981)CrossRefGoogle Scholar
  30. 30.
    Holley, R.: Rapid convergence to equilibrium in one-dimensional stochastic Ising models. Ann. Prob.13, 72–89 (1985)Google Scholar
  31. 31.
    Aizenman, M., Holley R.: Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin-Shlosman regime. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems, H. Kesten (Ed.), Berlin-Heidelberg-New York: Springer Verlag, 1987, pp. 1–11Google Scholar
  32. 32.
    Lu, S.-L., Yau, H.T.: Spectral gap and logarithmic Sobolev Inequality for Kawasaki and Glauber dynamics. Commun. Math. Phys.156, 399–433 (1993)Google Scholar
  33. 33.
    Martinelli, F., Olivieri, E.: Finite volume mixing conditions for lattice spin systems and exponential approach to equilibrium of Glauber dynamics. Parts I and II, Commun. Math. Phys.161, 447–486, 487–514 (1994)Google Scholar
  34. 34.
    Holley, R.A., Stroock, D.W.: Logarithmic Sobolev Inequalities and stochastic Ising models. J. Stat. Phys.46, 1159–1194 (1987)CrossRefGoogle Scholar
  35. 35.
    Holley, R.A., Stroock, D.A.: Uniform andL 2 convergence in one-dimensional stochastic Ising models. Commun. Math. Phys.123, 85–93 (1989)CrossRefGoogle Scholar
  36. 36.
    Zegarlinski, B.: Gibbsian description and description by stochastic dynamics in the statistical mechanics of lattice spin systems with finite range interactions. In: Proceedings of the Third International Conference on Stochastic Processes, Physics, and Geometry, S. Albeverio et al. (Eds), Singapore: World Scientific, 1993Google Scholar
  37. 37.
    Holley, R.: Rapid convergence to equilibrium in ferromagnetic stochastic Ising models. Resenhas IME-USP1, 131–149 (1993)Google Scholar
  38. 38.
    Zegarlinski, B.: Log-Sobolev inequlaities for infinite one-dimensional lattice systems. Commun. Math. Phys.133, 147–162 (1990)CrossRefGoogle Scholar
  39. 39.
    Stroock, D.W., Zegarlinski, B.: The logarithmic Sobolev inequality for continuous spin systems on a lattice. J. Funct. Anal.104, 299–326 (1992)CrossRefGoogle Scholar
  40. 40.
    Stroock, D.W., Zegarlinski, B.: The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Commun. Math. Phys.144, 303–323 (1992)Google Scholar
  41. 41.
    Stroock, D.W., Zegarlinski, B.: The logarithmic Sobolev inequality for discrete spin systems on a lattice. Commun. Math. Phys.149, 175–193 (1992)CrossRefGoogle Scholar
  42. 42.
    Haldane, F.D.M.: The Hierarchy of Fractional States and Numerical Studies. In R.E. Prange, S.M. Girvin (eds.). The Quantum Hall Effect New York: Springer Verlag, 1987, pp. 303–352Google Scholar
  43. 43.
    Fröhlich, J., Studer, U.M.: U(1)×SU(2) gauge invariance of non-relativistic quantum mechanics, and generalized Hall effects. Commun. Math. Phys.148, 553–600 (1992)Google Scholar
  44. 44.
    Fannes, M., Nachtergaele, B., Werner, B.F.: Exact Ground States of Quantum Spin Chains Europhys. Lett.10, 633–637 (1989)Google Scholar
  45. 45.
    Werner, R.F.: Remarks on a quantum state extension problem. Lett. Math. Phys.19, 319–326 (1990)CrossRefGoogle Scholar
  46. 46.
    Haldane, F.D.M.:Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett.93A, 464–468 (1983)Google Scholar
  47. 47.
    Affleck, I., Lieb, E.H.: A proof of part of Haldane's conjecture on quantum spin chains. Lett. Math. Phys.12, 57–69 (1986)CrossRefGoogle Scholar
  48. 48.
    Majumdar, C.K.: Antiferromagnetic model with known ground state. J. Phys. C: Cond Matt.3, 911–915 (1970)Google Scholar
  49. 49.
    Majumdar, C.K., Ghosh, D.K.: On next nearest-neighbor interaction in linear chain, I and II. J. Math. Phys.10, 1388–1398, and 1399–1402 (1969)CrossRefGoogle Scholar
  50. 50.
    Klein, D.J.: Variational localized-site cluster expansions. IX. Many-body valence-bond theory. Phys. Rev.B19, 870–876 (1979)CrossRefGoogle Scholar
  51. 51.
    van den Broeck, P.M.: Exact value of the ground state energy of the linear antiferromagnetic Heisenberg chain with nearest and next-nearest neighbor interactions. Phys. Lett.77A, 261–262 (1980)Google Scholar
  52. 52.
    Klein, D.J.: Exact ground states for a class of antiferromagnetic Heisenberg models with short range interactions. J. Phys. A: Math. Gen.15, 661–671 (1982)CrossRefGoogle Scholar
  53. 53.
    Caspers, W.J.: Exact ground states for a class of linear antiferromagnetic spin systems. Physica115A, 275–280 (1982)Google Scholar
  54. 54.
    Caspers, W.J., Magnus, W.: Exact ground states for a class of linear quantum spin systems. Physica119A, 291–294 (1983)Google Scholar
  55. 55.
    Fannes, M., Nachtergaele, B., Werner, B.F.: Entropy Estimates for Finitely Correlated States. Ann. Inst. H. Poincaré57, 259–277 (1992)Google Scholar
  56. 56.
    Bose, I.: Exact ground and excited states of an antiferromagnetic quantum spin model. J. Phys.: Condens. Matt.1, 9267–9271 (1989)CrossRefGoogle Scholar
  57. 57.
    Klümper, A., Schadschneider, A., Zittartz, J.: Ground state properties of a generalized VBS-model. Z. Phys. B-Condensed Matter87, 281–287 (1992)CrossRefGoogle Scholar
  58. 58.
    Kennedy, T., Lieb, E.H., Tasaki, H.: A two-dimensional isotropic quantum antiferromagnet with unique disordered ground state. J. Stat. Phys.53, 383–415 (1988)CrossRefGoogle Scholar
  59. 59.
    Chayes, J., Chayes, L., Kivelson, S.: Valence bond ground states in a frustrated two-dimensional spin 1/2 Heisenberg antiferromagnet. Commun. Math. Phys.123, 53–83 (1989)CrossRefGoogle Scholar
  60. 60.
    Kirillov, A.N., Korepin, V.E.: The resonating valence bond in quasicrystals. Leningrad Math. J.1, 343–377 (1990)Google Scholar
  61. 61.
    Long, M.W., Siak, S.: An exactly soluble two-dimensional quantum mechanical Heisenberg model: quantum fluctuations versus magnetic order. J. Phys.: Condens. Matter2, 10321–10341 (1990)CrossRefGoogle Scholar
  62. 62.
    Bose, I.: Two-dimensional spin models with resonating valence bond ground states. J. Phys.: Consdens. Matter2, 5479–5482 (1990)CrossRefGoogle Scholar
  63. 63.
    Bose, L.: Frustrated spin 1/2-model in two dimensions with a known ground state. Phys. Rev.B44, 443–445 (1991)CrossRefGoogle Scholar
  64. 64.
    Bose, I.: Antiferromagnetic spin models in two dimensions with known ground states. Phys. Rev.B45, 13072–13075 (1992)CrossRefGoogle Scholar
  65. 65.
    Freitag, W.-D., Müller-Hartmann, E.: Complete analysis of two-spin correlations of valence bond solid chains for all integer spins. Z. Phys. B Condensed Matter83, 381–390 (1991)CrossRefGoogle Scholar
  66. 66.
    Freitag, W.-D., Müller-Hartmann, E.; Spin correlations of inhomogeneous valence bond solid chains. Z. Phys. B Condensed Matter88, 279–282 (1992)CrossRefGoogle Scholar
  67. 67.
    Accardi, L.: Topics in Quantum Probability. Physics Rep.77, 169–192 (1981)CrossRefGoogle Scholar
  68. 68.
    Accardi, L., Frigerio, A.: Markovian Cocycles. Proc. R. Ir. Acad.83A (2), 251–263 (1983)Google Scholar
  69. 69.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Abundance of Translation Invariant Pure States on Quantum Spin Chains Lett. Math. Phys.25, 249–258 (1992)CrossRefGoogle Scholar
  70. 70.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated pure states. J. Funct. Anal.120, 511–534 (1994)CrossRefGoogle Scholar
  71. 71.
    Monti, F., Sütő, A.: Spin 1/2 Heisenberg model on Δ trees. Phys. Lett.156, 197–200 (1991)CrossRefGoogle Scholar
  72. 72.
    Monti, F., Sütő, A.: Heisenberg Antiferromagnet on Triangulated Trees. Helv. Phys. Acta65, 560–595 (1992)Google Scholar
  73. 73.
    Gottstein, C.-T., Werner, R.F.: Ground states of the infinite q-deformed Heisenberg ferromagnet. Preprint archived as cond-mat/9501123Google Scholar
  74. 74.
    Albanese, C.: Unitary Dressing Transformations and Exponential Decay Below Threshold for Quantum Spin Systems. Part I–II. Commun. Math. Phys.134, 1–27 (1990)CrossRefGoogle Scholar
  75. 75.
    Albanese, C.: Unitary Dressing Transformations and Exponential Decay Below Threshold for Quantum Spin Systems. Part III–IV. Commun. Math. Phys.134, 237–272 (1990)CrossRefGoogle Scholar
  76. 76.
    Kennedy, T., Tasaki, H.: Hidden Symmetry Breaking and the Haldane Phase in S=1 Quantum Spin Chains. Commun. Math. Phys.147, 431–484 (1992)Google Scholar
  77. 77.
    Matsui, T.: Purification and Uniqueness of Quantum Gibbs States. Commun. Math. Phys.162, 321–332 (1994)Google Scholar
  78. 78.
    Datta, N., Fernández, R., Fröhlich, J.: Low temperature phase diagrams of quantum lattice systems I. Texas archive 95–288Google Scholar
  79. 79.
    Koma, T., Tasaki, H.: Symmetry Breaking and Finite-Size Effects in Quantum Many-Body Systems. J. Stat. Phys.76, 745–803 (1994)Google Scholar
  80. 80.
    Werner, R.F.: Finitely correlated pure states. In: M. Fannes, C. Maes, and A. Verbeure (eds), On three levels; micro-, meso, and macro-approaches in physics. New York: Plenum, 1994Google Scholar
  81. 81.
    Hiai, F., Petz, D.: Entropy Density for Algebraic States. J. Funct. Analysis125, 287–308 (1994)CrossRefGoogle Scholar
  82. 82.
    Olivieri, E., Picco, P.: Cluster Expansion ford-Dimensional Lattice Systems and Finite-Volume Factorization Properties. J. Stat. Phys.59, 221–256 (1990)CrossRefGoogle Scholar
  83. 83.
    Lange, C., Klümper, A., Zittartz, J.: Exact ground states for antiferromagnetic spin-one chains with nearest and next-nearest neighbour interactions. PreprintGoogle Scholar
  84. 84.
    den Nijs, M., Rommelse, K.: Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. RevB40, 4709 (1989)CrossRefGoogle Scholar
  85. 85.
    Chen, J.-Q.: Group Representation Theory for Physicists, Singapore: World Scientific, 1989Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Bruno Nachtergaele
    • 1
  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations