Communications in Mathematical Physics

, Volume 175, Issue 3, pp 521–563 | Cite as

Supercoherent states, super-Kähler geometry and geometric quantization

  • Amine M. El Gradechi
  • Luis M. Nieto


Generalized coherent states provide a means of connecting square integrable representations of a semi-simple Lie group with the symplectic geometry of some of its homogeneous spaces. In the first part of the present work this point of view is extended to the supersymmetric context through the study of the OSp(2/2) coherent states. These are explicitly constructed starting from the known abstract typical and atypical representations of osp(2/2). Their underlying geometries turn out to be those of supersymplectic OSp(2/2)-homogeneous spaces. Moment maps identifying the latter with coadjoint orbits of OSp(2/2) are exhibited via Berezin's symbols. When considered within Rothstein's general paradigm, these results lead to a natural general definition of a super-Kähler supermanifold, the supergeometry of which is determined in terms of the usual geometry of holomorphic Hermitian vector bundles over Kähler manifolds. In particular, the supergeometry of the above orbits is interpreted in terms of the geometry of Einstein-Hermitian vector bundles. In the second part, an extension of the full geometric quantization procedure is applied to the same coadjoint orbits. Thanks to the super-Kähler character of the latter, this procedure leads to explicit super-unitary irreducible representations of osp(2/2) in super-Hilbert spaces of superholomorphic square-integrable sections of prequantum bundles of the Kostant type. This work lays the foundations of a program aimed at classifying Lie supergroups' coadjoint orbits and their associated irreducible representations, ultimately leading to harmonic superanalysis. For this purpose a set of consistent conventions is exhibited.


Vector Bundle Coherent State Homogeneous Space Geometric Quantization Coadjoint Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schrödinger, E.: Der stetige übergang von der Mikro-zur Makromechanik. Naturwissenschaften14, 664 (1926)CrossRefGoogle Scholar
  2. 2.
    Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev.130, 2529 (1963); Coherent and incoherent states of the radiation field. Phys. Rev.131, 2766 (1963)CrossRefGoogle Scholar
  3. 3.
    Perelomov, A.: Generalized Coherent States and Their Applications. Berlin, Heidelberg, New York: Springer, 1986Google Scholar
  4. 4.
    Klauder, J.R., Skagerstam, B.-S.: Coherent States—Applications in Physics and Mathematical Physics. Singapore: World Scientific, 1985Google Scholar
  5. 5.
    Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics61, Philadelphia: SIAM, 1992Google Scholar
  6. 6.
    Berezin, F.A.: General concept of quantization. Commun. Math. Phys.40, 153 (1975)CrossRefGoogle Scholar
  7. 7.
    Onofri, E.: A note on coherent state representations of Lie groups. J. Math. Phys.16, 1087 (1975)CrossRefGoogle Scholar
  8. 8.
    El Gradechi, A.M.: On the supersymplectic homogeneous superspace underlying the OSp(1/2) coherent states. J. Math. Phys.34, 5951 (1993)CrossRefGoogle Scholar
  9. 9.
    El Gradechi, A.M.: Geometric quantization of an OSp(1/2) coadjoint orbit. Lett. Math. Phys.35, 13 (1995)CrossRefGoogle Scholar
  10. 10.
    Zhang, W.M., Feng, D.H., Gilmore, R.: Coherent states: Theory and some applications. Rev. Mod. Phys.26, 867 (1990)CrossRefGoogle Scholar
  11. 11.
    Delbourgo, R.: Minimal uncertainty states for the rotatin and allied groups. J. Phys. A: Math. Gen.10, 1837 (1977); Delbourgo, R., Fox, J.R.: Maximum weight vectors possess minimal uncertainty. J. Phys. A: Math. Gen.10, L235 (1977)CrossRefGoogle Scholar
  12. 12.
    De Bièvre, S., El Gradechi, A.M.: Quantum mechanics and coherent states on the anti-de Sitter spacetime and their Poincaré contraction. Ann. Inst. H. Poincaré57, 403 (1992)Google Scholar
  13. 13.
    Radcliffe, J.M.: Some properties of spin coherent states. J. Phys. A: Gen. Phys.4, 313 (1971)CrossRefGoogle Scholar
  14. 14.
    Ali, S.T., Antoine, J.-P.: Coherent states of the 1+1-dimensional Poincaré group: Square integrability and a relativistic Weyl transform. Ann. Inst. H. Poincaré51, 23 (1989); Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: De Sitter to Poincaré contraction and relativistic coherent states. Ann. Inst. H. Poincaré52, 83 (1990)Google Scholar
  15. 15.
    Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Square integrability of group, representations on homogeneous spaces. I. Reproducing triples and frames. Ann. Inst. H. Poincaré55, 829 (1991); II. Coherent and quasi-coherent states. The case of the Poincaré group. Ann. Inst. H. Poincaré55, 857 (1991)Google Scholar
  16. 16.
    Kirillov, A.: Eléments de la théorie des représentations. Moscou: Editions Mir, 1974; The method of orbits in representation theory. In: Lie Groups and Their Representations. Gelfand, I.M. (ed.), Budapest: Akadémiai Kiadó, 1975, p. 219Google Scholar
  17. 17.
    Kostant, B.: Quantization and unitary representation In: Lecture Notes in Mathematics170, Berlin, Heidelberg, New York: Springer, 1970, p. 87Google Scholar
  18. 18.
    Souriau, J.M.: Structure des systèmes dynamiques. Paris: Dunod, 1970Google Scholar
  19. 19.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. Ann. Phys. (N.Y.)111, 61 (1978)CrossRefGoogle Scholar
  20. 20.
    Freund, P.G.O.: Introduction to Supersymmetry. Cambridge: Cambridge University Press, 1986Google Scholar
  21. 21.
    Berezin, F.A.: The Method of Second Quantization. New York: Academic Press 1966Google Scholar
  22. 22.
    Berezin, F.A.: Introduction to Superanalysis. Dordrecht: Reidel, 1987; The mathematical basis of supersymmetric field theories. Soviet J. Nucl. Phys.29, 857 (1979)Google Scholar
  23. 23.
    Cornwell, J.F.: Group Theory in Physics Vol. 3-Supersymmetries and Infinite Dimensional Algebras. London: Academic Press 1989Google Scholar
  24. 24.
    Scheunert, M.: The Theory of Lie Superalgebras—An Introduction. Lecture Notes in Mathematics716, Berlin, Heidelberg, New York: Springer, 1979Google Scholar
  25. 25.
    Kac, V.: Representations of classical Lie superalgebras. In: Lecture Notes in Mathematics676, Berlin: Springer-Verlag, 1978, p. 597Google Scholar
  26. 26.
    Leites, D.A.: Introduction to the theory of supermanifolds. Russ. Math. Surv.35, 1 (1980)Google Scholar
  27. 27.
    DeWitt, B.S.: Supermanifolds. 2nd Edition, Cambridge: Cambridge, University Press, 1992Google Scholar
  28. 28.
    Kostant, B.: Graded manifolds, graded Lie theory and prequantization. In: Conference on Differential Geometric Methods in Mathematical Physics. Bleuler, K., Reetz, A.: eds., Lecture Notes in Mathematics570, Berlin, Heidelberg, New York: Springer 1977, p. 177Google Scholar
  29. 29.
    Manin, Y.I.: Gauge Field Theory and Complex Geometry. Berlin: Springer, 1988Google Scholar
  30. 30.
    Bartocci, C., Bruzzo, U., Hernández-Ruipérez, D.: The Geometry of Supermanifolds. Dordrecht: Kluwer Academic Publishers, 1991Google Scholar
  31. 31.
    Tuynman, G.M.: Supermanifolds: A Geometric Approach. Book in preparationGoogle Scholar
  32. 32.
    Scheunert, M., Nahm, W., Rittenberg, V.: Irreducible representations of the osp(2, 1) and spl(2, 1) graded Lie algebras. J. Math. Phys.18, 155 (1977)CrossRefGoogle Scholar
  33. 33.
    Nishiyama, K.: Characters and super-characters of discrete series representations for orthosymplectic Lie superalgebras. J. Algebra141, 399 (1991)CrossRefGoogle Scholar
  34. 34.
    Balantekin, A.B., Schmitt, H.A., Barrett, B.R.: Coherent states for the harmonic oscillator representations of the orthosymplectic supergroup OSp(1/2N, R). J. Math. Phys.29, 1634 (1988)CrossRefGoogle Scholar
  35. 35.
    Balantekin, A.B., Schmitt, H.A., Halse, P.: Coherent states for the noncompact supergroups OSp(2/2N, R). J. Math. Phys.30, 274 (1989)CrossRefGoogle Scholar
  36. 36.
    Fatyga, B.W., Kostelecký, V.A., Nieto, M.M., Truax, D.R.: Supercoherent states. Phys. Rev.D43, 1403 (1991)CrossRefGoogle Scholar
  37. 37.
    Duval, C., Horváthy, P.A.: On Schrödinger superalgebras. J. Math. Phys.35, 2516 (1994)CrossRefGoogle Scholar
  38. 38.
    Rothstein, M.: The structure of supersymplectic supermanifolds. In: Differential Geometric Methods in Mathematical Physics, Bartocci, C., Bruzzo, U., Cianci, R. eds., Lecture Notes in Physics375, Berlin, Heidelberg, New York: Springer, 1991, p. 331Google Scholar
  39. 39.
    Monterde, J.: A characterization of graded symplectic structures. Differential Geom. Appl.2, 81 (1992)CrossRefGoogle Scholar
  40. 40.
    Frappat, L., Sciarrino, A., Sorba, P.: Structure of basic Lie superalgebras and of their affine extensions. Commun. Math. Phys.121, 457 (1989), and references thereinCrossRefGoogle Scholar
  41. 41.
    Sternberg, S., Wolf, J.: Hermitian Lie algebras and metaplectic representations. Trans. Am. Math. Soc.238, 1 (1978)Google Scholar
  42. 42.
    Green, P.: On holomorphic graded manifolds. Proc. Am. Math. Soc.85, 587 (1982)Google Scholar
  43. 43.
    Rothstein, M.: Deformations of complex supermanifolds. Proc. Am. Math. Soc.95, 255 (1985)Google Scholar
  44. 44.
    Batchelor, M.: The structure of supermanifolds. Trans. Am. Math. Soc.253, 329 (1979)Google Scholar
  45. 45.
    Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Princeton, NJ: Princeton University Press, 1987Google Scholar
  46. 46.
    Woodhouse, N.M.J.: Geometric Quantization. Oxford: Clarendon Press, 1980Google Scholar
  47. 47.
    Kirillov, A.A.: Geometric quantization. In: Dynamical Systems IV, Arnol'd, V.I., Novikov, S.P. eds., Berlin, Heidelberg, New York: Springer, 1990, p. 137Google Scholar
  48. 48.
    Tuynman, G.M.: Geometric quantization of the BRST charge. Commun. Math. Phys.150, 237 (1992)CrossRefGoogle Scholar
  49. 49.
    Schaller, P., Schwarz, G.: Anomalies from geometric quantization of fermionic field theories. J. Math. Phys.31, 2366 (1990)CrossRefGoogle Scholar
  50. 50.
    Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.: Super Toeplitz operators and nonperturbative quantization of supermanifolds. Commun. Math. Phys.153, 49 (1993)CrossRefGoogle Scholar
  51. 51.
    Tuynman, G.M.: Quantization: Towards a comparison between methods. J. Math. Phys.28 2829 (1987)CrossRefGoogle Scholar
  52. 52.
    Renouard, P.: Variétés symplectiques et quantification. Thèse, Universié d'Orsay, 1969Google Scholar
  53. 53.
    Schmitt, T.: Supergeometry and hermitian conjugation. J. Geom. Phys.7, 141 (1990)CrossRefGoogle Scholar
  54. 54.
    Nagamachi, S., Kobayashi, Y.: Hilbert superspace. J. Math. Phys.33, 4274 (1992)CrossRefGoogle Scholar
  55. 55.
    El Gradechi, A.M.: On the super-unitarity of discrete series representations of orthosymplectic Lie superalgebras. Preprint CRM-2279. SubmittedGoogle Scholar
  56. 56.
    Beckers, J., Gagnon, L., Hussin, V., Winternitz, P.: Superposition formulas for nonlinear superequations. J. Math. Phys.31, 2528 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Amine M. El Gradechi
    • 1
    • 2
  • Luis M. Nieto
    • 1
  1. 1.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada
  2. 2.Department of Mathematics and StatisticsConcordia UniversityMontréalCanada

Personalised recommendations