Communications in Mathematical Physics

, Volume 174, Issue 1, pp 149–159 | Cite as

Singular continuous spectrum for palindromic Schrödinger operators

  • A. Hof
  • O. Knill
  • B. Simon


We give new examples of discrete Schrödinger operators with potentials taking finitely many values that have purely singular continuous spectrum. If the hullX of the potential is strictly ergodic, then the existence of just one potentialx inX for which the operator has no eigenvalues implies that there is a generic set inX for which the operator has purely singular continuous spectrum. A sufficient condition for the existence of such anx is that there is azX that contains arbitrarily long palindromes. Thus we can define a large class of primitive substitutions for which the operators are purely singularly continuous for a generic subset inX. The class includes well-known substitutions like Fibonacci, Thue-Morse, Period Doubling, binary non-Pisot and ternary non-Pisot. We also show that the operator has no absolutely continuous spectrum for allxX ifX derives from a primitive substitution. For potentials defined by circle maps,x n =1 J 0+nα), we show that the operator has purely singular continuous spectrum for a generic subset inX for all irrational α and every half-open intervalJ.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Large Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellissard, J.: Spectral properties of Schrödinger's operator with Thue-Morse potential. In: Luck, J. M., Moussa, P., Waldschmidt, M. (eds.) Number Theory and Physics, Springer Proceedings in Physics, Vol.47, Berlin, Heidelberg, New York: Springer 1990, pp 140–150Google Scholar
  2. 2.
    Bellissard, J., Bovier, A., Ghez, J.-M.: Spectral properties of a tight binding Hamiltonian with period doubling potential. Commun. Math. Phys.135, 379–399 (1991)Google Scholar
  3. 3.
    Bellissard, J., Bovier, A., Ghez, J.-M.: Gap labelling theorems for one dimensional discrete Schrödinger operators. Rev. Math. Phys.4, 1–37 (1992)Google Scholar
  4. 4.
    Bellissard, J., Iochum, B., Scoppola, E., Testard, D.: Spectral properties of one dimensional quasi-crystals. Commun. Math. Phys.125, 527–543 (1989)Google Scholar
  5. 5.
    Bovier, A., Ghez, J.-M.: Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions. Commun. Math. Phys.158, 45–66 (1993)Google Scholar
  6. 6.
    Bovier, A., Ghez, J.-M.: Erratum to [5]. Commun. Math. Phys.Google Scholar
  7. 7.
    Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys.108, 41–66 (1987)Google Scholar
  8. 8.
    Casdagli, M.: Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys.107, 295–318 (1986)Google Scholar
  9. 9.
    Dekking, F.M.: The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahr. Verw. Geb.41, 221–239 (1978)Google Scholar
  10. 10.
    Delyon, F., Petritis, D.: Absence of localization in a class of Schrödinger operators with quasiperiodic potential. Commun. Math. Phys.103, 441–444 (1986)Google Scholar
  11. 11.
    Delyon, F., Peyrière, J.: Recurrence of the eigenstates of a Schrödinger operator with automatic potential. J. Stat. Phys.64, 363–368 (1991)Google Scholar
  12. 12.
    Dulea, M., Johansson, M., Riklund, R.: Localization of electrons and electromagnetic waves in a deterministic aperiodic system. Phys. Rev.B45, 105–114 (1992)Google Scholar
  13. 13.
    Dulea, M., Johansson, M., Riklund R.: Unusual scaling of the spectrum in a deterministic aperiodic tight-binding model. Phys. Rev.B47, 8547–8551 (1993)Google Scholar
  14. 14.
    Hof, A.: Quasicrystals, aperiodicity and lattice systems. Proefschrift, Rijksuniversiteit Groningen, 1992Google Scholar
  15. 15.
    Hof, A.: Some remarks on discrete aperiodic Schrödinger operators. J. Stat. Phys.72, 1353–1374 (1993)Google Scholar
  16. 16.
    Jacobs, K., Keane, M.: 0–1-sequences of Toeplitz type. Z. Wahr. Verw. Geb.13, 123–131 (1969)Google Scholar
  17. 17.
    Jitomirskaya, S., Simon, B.: Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators. Commun. Math. Phys.165, 201–205 (1994)Google Scholar
  18. 18.
    Kohmoto, M., Kadanoff, L.P., Tang, C.: Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett.50, 1870–1872 (1983)Google Scholar
  19. 19.
    Kotani, S.: Jacobi matrices with random potential taking finitely many values. Rev. Math. Phys.1, 129–133 (1989)Google Scholar
  20. 20.
    Luck, J.M.: Cantor spectra and scaling of gap widths in deterministic aperiodic systems. Phys. Rev.B39, 5834–5849 (1989)Google Scholar
  21. 21.
    Neveu, J.: Sur les suites de Toeplitz. Z. Wahr. Verw. Geb.13, 132–134 (1969)Google Scholar
  22. 22.
    Ostlund, S., Pandt, R., Rand, D., Schellnhuber, H.J., Siggia, E.D.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett.50, 1873–1876 (1983)Google Scholar
  23. 23.
    Queffélec, M.: Substitution Dynamical Systems-Spectral Analysis, volume1294, Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  24. 24.
    Simon, B.: Operators with singular continuous spectrum: I. General operators. To appear in Ann. Math.Google Scholar
  25. 25.
    Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc.7, 447–526 (1982)Google Scholar
  26. 26.
    Sütő, A.: The spectrum of a quasiperiodic Schrödinger operator: Commun. Math. Phys.111, 409–415 (1987)Google Scholar
  27. 27.
    Sütő, A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys.56, 525–531 (1989)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. Hof
    • 1
  • O. Knill
    • 2
  • B. Simon
    • 2
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityHamiltonCanada
  2. 2.Division of Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations