Advertisement

Communications in Mathematical Physics

, Volume 174, Issue 1, pp 117–136 | Cite as

Modular invariance and uniqueness of conformal characters

  • Wolfgang Eholzer
  • Nils-Peter Skoruppa
Article

Abstract

We show that the conformal characters of various rational models ofW-algebras can be already uniquely determined if one merely knows the central charge and the conformal dimensions. As a side result we develop several tools for studying representations of SL(2,ℤ) on spaces of modular functions. These methods, applied here only to certain rational conformal field theories, may be useful for the analysis of many others.

Keywords

Neural Network Statistical Physic Field Theory Complex System Rational Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory. Nucl. Phys.B 241, 333–380 (1984)Google Scholar
  2. 2.
    Witten, E.: Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys.121, 351–399 (1989)Google Scholar
  3. 3.
    Cardy, J.L.: Operator Content of Two-Dimensional Conformally Invariant Theories. Nucl. Phys.B 270, 186–204 (1986)Google Scholar
  4. 4.
    Bouwknegt, P., Schoutens, K.:W-Symmetry in Conformal Field Theory. Phys. Rep.223, 183–276 (1993)Google Scholar
  5. 5.
    Nahm, W., Recknagel, A., Terhoeven, M.: Dilogarithm Identities in Conformal Field Theory. Mod. Phys. Lett.A 8, 1835–1847 (1993)Google Scholar
  6. 6.
    Kellendonk, J., Rösgen, M., Varnhagen, R.: Path Spaces andW-Fusion in Minimal Models. Int. J. Mod. Phys.A 9, 1009–1023 (1994)Google Scholar
  7. 7.
    Eholzer, E., Skoruppa, N.-P.: Conformal Characters and Theta Series. Preprint MSRI 012-95 BONN-TH-94-24, Lett. Math. Phys. (to appear)Google Scholar
  8. 8.
    Frenkel, I.B., Huang, Y., Lepowsky, J.: On Axiomatic Approaches to Vertex Operator Algebras and Modules. Mem. Am. Math. Soc.104, Number 494, Providence, Rhode Island: Am. Math. Soc., 1993Google Scholar
  9. 9.
    Frenkel, I.B., Zhu, Y.: Vertex Operator Algebras Associated to Representations of Affine and Virasoro Algebras. Duke Math. J.66(1), 123–168 (1992)Google Scholar
  10. 10.
    Nahm, W.: Chiral Algebras of Two-Dimensional Chiral Field Theories and Their Normal Ordered Products Proc. of the Trieste Conference on “Recent Developments in Conformal Field Theories”, Singapore: World Scientific, 1989Google Scholar
  11. 11.
    Féher, L., O'Raifeartaigh, L., Tsutsui, I.: The Vacuum Preserving Lie Algebra of a ClassicalW-algebra. Phys. Lett.B 316, 275–281 (1993)Google Scholar
  12. 12.
    Zhu, Y.: Vertex Operator Algebras, Elliptic Functions, and Modular Forms. Ph.D. thesis, Yale University, 1990Google Scholar
  13. 13.
    Wang, W.: Rationality of Virasoro Vertex Operator Algebras. Int. Research Notices in Duke Math. J.7, 197–211 (1993)Google Scholar
  14. 14.
    Eholzer, W., Flohr, M., Honecker, A., Hübel, R., Nahm, W., Varnhagen R.: Representations ofW-Algebras with Two Generators and New Rational Models. Nucl. Phys.B 383, 249–288 (1992)Google Scholar
  15. 15.
    Anderson, G., Moore, G.: Rationality in Conformal Field Theory. Commun. Math. Phys.117, 441–450 (1988)Google Scholar
  16. 16.
    Rocha-Caridi, A.: Vacuum Vector Representations of the Virasoro Algebra. In: Vertex Operators in Mathematics and Physics. Mandelstam, S., Singer, I.M. (eds.), MSRI Publications Nr.3, Berlin, Heidelberg, New York: Springer 1984Google Scholar
  17. 17.
    Cappelli, A., Itzykson, C., Zuber, J.B.: The A-D-E Classification of Minimal andA 1(1) Conformal Invariant Theories. Commun. Math. Phys.113, 1–26 (1987)Google Scholar
  18. 18.
    Frenkel, E., Kac, V., Wakimono, M.: Characters and Fusion Rules forW-Algebras via Quantized Drinfeld-Sokolov Reduction. Commun. Math. Phys.147, 295–328 (1992)Google Scholar
  19. 19.
    Kac, V.: Infinite Dimensional Lie Algebras and Groups. Singapore: World Scientific, 1989Google Scholar
  20. 20.
    Eholzer, W., Honecker, A., Hübel, R.: How Complete is the Classification ofW-Symmetries. Phys. Lett.B 308, 42–50 (1993)Google Scholar
  21. 21.
    Eholzer, W.: Fusion Algebras Induced by Representations of the Modular Group. Int. J. Mod. Phys.A 8, 3495–3507 (1993)Google Scholar
  22. 22.
    Eholzer, W.: Exzeptionelle und SupersymmetrischeW-Algebren in Konformer Quantenfeldtheorie. Diplomarbeit BONN-IR-92-10Google Scholar
  23. 23.
    Skoruppa, N.-P.: Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts. Bonner Mathematische Schriften159 (1985)Google Scholar
  24. 24.
    Wohlfahrt, K.: An extension of F. Klein's level concept. Illinois J. Math.8, 529–535 (1964)Google Scholar
  25. 25.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Sholten, Tokyo, Japan: Princeton Press, 1971Google Scholar
  26. 26.
    Nobs, A.: Die irreduziblen Darstellungen der GruppenSL 2(Z p) insbesondereSL 2(Z 2) I, Comment. Math. Helvetici51, 465–489 (1976); Nobs, A., Wolfart, J.: Die irreduziblen Darstellungen der GruppenSL 2(Z p) insbesondereSL 2(Z 2) II, Comment. Math. Helvetici51, 491–526 (1976)Google Scholar
  27. 27.
    Dornhoff, L.: Group Representation Theory. New York: Marcel Dekker, 1971Google Scholar
  28. 28.
    Batut, C., Bernardi, D., Cohen, H., Olivier, M.: PARI-GP (1989), Université Bordeaux 1, BordeauxGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Wolfgang Eholzer
    • 1
  • Nils-Peter Skoruppa
    • 2
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
  2. 2.U.F.R. de Mathématiques et InformatiqueUniversité Bordeaux 1TalenceFrance

Personalised recommendations