Skip to main content
Log in

Classical and quantum integrable systems in 263-1263-1263-1and separation of variables

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Classical integrable Hamiltonian systems generated by elements of the Poisson commuting ring of spectral invariants on rational coadjoint orbits of the loop algebra\(\widetilde{\mathfrak{g}\mathfrak{l}}^{ + *} (2,\mathbb{R})\) are integrated by separation of variables in the Hamilton-Jacobi equation in hyperellipsoidal coordinates. The canonically quantized systems are then shown to also be completely integrable and separable within the same coordinates. Pairs of second class constraints defining reduced phase spaces are implemented in the quantized systems by choosing one constraint as an invariant, and interpreting the other as determining a quotient (i.e. by treating one as a first class constraint and the other as a gauge condition). Completely integrable, separable systems on spheres and ellipsoids result, but those on ellipsoids require a further modification of order\(\mathcal{O}(\hbar ^2 )\) in the commuting invariants in order to assure self-adjointness and to recover the Laplacian for the case of free motion. for each case — in the ambient space ℝn, the sphere and the ellipsoid — the Schrödinger equations are completely separated in hyperellipsoidal coordinates, giving equations of generalized Lamé type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ad] Adler, M.: On a Trace Functional for Formal Pseudo-Differential Operators and the Symplectic Structure of the Korteweg-de Vries Equation. Invent. Math.50, 219–248 (1979)

    Google Scholar 

  • [AHH1] Adams, M.R., Harnad, J., Hurtubise, J.: “Isospectral Hamiltonian Flows in Finite and Infinite Dimensions II. Integration of Flows.” Commun. Math. Phys.134, 555–585 (1990)

    Google Scholar 

  • [AHH2] Adams, M.R., Harnad, J., Hurtubise, J.: Dual Moment Maps to Loop Algebras. Lett. Math. Phys.20, 294–308 (1990)

    Google Scholar 

  • [AHH3] Adams, M.R., Harnad, J., Hurtubise, J.: Liouville Generating Function for Isospectral Hamiltonian Flow in Loop Algebras. In: Integrable and Superintergrable Systems, ed. B.A. Kuperschmidt, Singapore: World Scientific, 1990

    Google Scholar 

  • [AHH4] Adams, M.R., Harnad, J., Hurtubise, J.: Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras. Commun. Math. Phys.155, 385–413 (1993)

    Google Scholar 

  • [AHP] Adams, M.R., Harnad, J., Previato, E.: Isospectral Hamiltonian Flows in Finite and Infinite Dimensions I. Generalised Moser Systems and Moment Maps into Loop Algebras. Commun. Math. Phys.117, 451–500 (1988)

    Google Scholar 

  • [AvM] Adler, M. and van Moerbeke, P.: Completely Integrable Systems, Euclidean Lie Algebras, and Curves. Adv. Math.38, 267–317 (1980); linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory. ibid. Adv. Math.38, 318–379 (1980)

    Google Scholar 

  • [BKW] Boyer, C.P., Kalnins, E.G., Winternitz, P.: Completely Integrable Relativistic Hamiltonian Systems and Separation of Variables in Hermitian Hyperbolic Spaces J. Math. Phys.24, 2022–2034 (1983)

    Google Scholar 

  • [BKW2] Boyer, C.P., Kalnins, E.G., Winternitz, P.: Separation of Variables for the Hamilton-Jacobi Equation on Complex Projective Spaces. SIAM J. Math. Anal.16, 93–109 (1985)

    Google Scholar 

  • [BT] Babelon, O., Talon, M.: Separation of variables for the classical and quantum Neumann model. Nucl. Phys.B379, 321 (1992)

    Google Scholar 

  • [D] Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Science Monograph Seris No. 2, New York, 1964

  • [Du] Dubrovin, B.A.: Theta Functions and Nonlinear Eqations. Russ. Math. Surv.36, 11–92 (1981)

    Google Scholar 

  • [G] Gaudin, M.: Diagonalization d'-une classe d'hamiltoniens de spin. J. Physique37, 1087–1098 (1976)

    Google Scholar 

  • [GH] Griffiths, P., Harrris, J.: Principles of Algebraic Geometry. New York: Wiley, 1978

    Google Scholar 

  • [GHHW] Gagnon, L., Harnad, J., Hurtubise, J., Winternitz, P.: Abelian Integrals and the Reduction Method for an Integrable Hamiltonian System. J. Math. Phys.26, 1605–1612 (1985)

    Google Scholar 

  • [H] Harnad, J.: Isospectral Flow and Liouville-Arnold Integration in Loop Algebras. In: Geometric and Quantum Methods in Integrable Systems. Springer Lecture Notes in Physics 424, G. Helminck (ed.) Berlin, Heidelberg, New York: Springer, 1993

    Google Scholar 

  • [HW] Harnad, J., Wisse, M.-A., Isospectral Flow in Loop Algebras and Quasiperiodic Solutions to the Sine-Gordon Equation. J. Math. Phys.34, 3518–3526 (1993)

    Google Scholar 

  • [K] Kalnins, E.G.: Separation of Variables for Riemannian Symmetric Spaces of Constant Curvature. Pitman Monographs and Surveys in Pure and Applied Mathematics28, (1986)

  • [KM] Kalnins, E.G., Miller, W. Jr.: Separation of Variables onn-dimensional Riemannian manifolds: 1. Then-sphereS n and Euclidean SpaceR n . J. Math. Phys.27, 1721–1736 (1986)

    Google Scholar 

  • [KMW] Kalnins, E.G., Miller, W. Jr., Winternitz, P.: The GroupO(4), Separation of Variables and the Hydrogen Atom. SIAM J. Appl. Math.30, 630–664 (1976)

    Google Scholar 

  • [KN] Krichever, I.M., Novikov, S.P.: Holomorphic Bundles over Algebraic Curves and Nonlinear Equations. Russ. Math. Surveys32, 53–79 (1980)

    Google Scholar 

  • [Ko] Kostant, G.: The Solution to a Generalized Toda Lattice and Representation. Theory. Adv. Math.34, 195–338 (1979)

    Google Scholar 

  • [Ku] Kuznetsov, Vadim B.: Equivalence of two graphical calculi. J. Phys. A25, 6005–6026 (1992)

    Google Scholar 

  • [Mc] Macfarlane, A.J.: The quantum Neumann model with the potential of Rosochatius. Nucl. Phys.B386, 453–467 (1992)

    Google Scholar 

  • [Mo] Moser, J.: Geometry of Quadrics and Spectral Theory, The Chern Symposium, Berkeley, June 1979, 147–188, New York: Springer, Berlin, Heidelberg 1980

    Google Scholar 

  • [ORW] del Olmo, M.A., Rodriguez, M.A., Winternitz, P.: Integrable Systems Based on SU(p, q) Homogeneous Manifolds. J. Math Phys.34, 5118–5139 (1993)

    Google Scholar 

  • [Sk1] Sklyanin, E.K.: Separation of Variables in the Glaudin Model. J. Sov. Math.47, 2473–2488 (1989)

    Google Scholar 

  • [Sk2] Sklyanin, E.K.: Functional Bethe Ansatz. In: Integrable and Superintergrable Systems, ed. B.A. Kupershmidt, Singapore: World Scientific, 1990

    Google Scholar 

  • [SK3] Sklyanin, E.K.: Separation of Variables in the Quantum Integrable Models Related to the YangianY[sl(3)]. Preprint NI-92013 (1992)

  • [Sy] Symes, W.: Systems of Toda Type, Inverse Spectral Problems and Representation Theory. Invent. Math.59, 13–51 (1980)

    Google Scholar 

  • [TW] Tafel, J., Wisse, M.A.: Loop Algebra Approach to Generalized Sine-Gordon Equations. J. Math. Phys.34, (1993)

  • [To] Toth, John A.: Various Quantum Mechanical Aspects of Quadratic Forms. M.I.T. preprint (1992)

  • [W] Wisse, M.A.: Darboux Coordinates and Isospectral Hamiltonian Flows for the Massive Thirring Model. Lett. Math. Phys.28, 287–294 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Research supported in part by the Natural Sciences and Engineering Research Council of Canada and the Fonds FCAR du Québec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harnad, J., Winternitz, P. Classical and quantum integrable systems in 263-1263-1263-1and separation of variables. Commun.Math. Phys. 172, 263–285 (1995). https://doi.org/10.1007/BF02099428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099428

Keywords

Navigation