Advertisement

Communications in Mathematical Physics

, Volume 145, Issue 3, pp 561–593 | Cite as

Semi-infinite homology and 2D gravity. I

  • Bong H. Lian
  • Gregg J. Zuckerman
Article

Abstract

In [33], we studied the constraint problem for two-dimensional quantum gravity in the conformal gauge. In this gauge, we proposed an ansatz for the gravitational sector. Using this ansatz, we established a striking connection between the matrix models and continuum 2D gravity. We also announced several results on semi-infinite homology of the Virasoro algebra with coefficients in a suitable class of positive energy modules. In this article, we will provide details of the proof of the announced results.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banks, T., Douglas, M., Seiberg, N., Shenker, S.: Microscopic and macroscopic loops in nonperturbative two-dimensional gravity. Phys. Lett. B238, 279 (1980)Google Scholar
  2. 2.
    Bott, R., Tu, L.: Differential forms in algebraic topology. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  3. 3.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B241, 333 (1984)Google Scholar
  4. 4.
    Braaten, E., Curtright, T., Thorn, C.: An exact operator solution of the quantum Liouville field theory. Ann. Phys.147, 365 (1983); Quantum Bäcklund transformation for the Liouville theory. Phys. Lett. B118, 115 (1982)Google Scholar
  5. 5.
    Brézin, E., Douglas, M., Kazakov, V., Shenker, S.: The Ising model coupled to 2D gravity, a non-perturbative analysis. Phys. Lett. B237, 43 (1990)Google Scholar
  6. 6.
    Brézin, E., Kazakov, V.: Exactly solvable field theories of closed strings. Phys. Lett. B236, 144 (1990)Google Scholar
  7. 7.
    Crnkovic, C., Ginparg, P., Moore, G.: The Ising model, the Yang-Lee edge singularity and 2D quantum gravity. Yale-Harvard preprint YCTP-P20-89, HUTP 89/A058Google Scholar
  8. 8.
    Chodos, A., Thorn, C.: Nucl. Phys. B72, 59 (1974)Google Scholar
  9. 9.
    Curtright, T., Thorn, C.: Conformally invariant quantization of the Liouville theory. Phys. Rev. Lett.48, 1309 (1982)Google Scholar
  10. 10.
    David, K.: Mod. Phys. Lett. A3, 1651 (1988)Google Scholar
  11. 11.
    Distler, J.: Princeton Preprint, PUPT-1161Google Scholar
  12. 12.
    Dijkgraaf, R., Verlinde, H., Verlinde, E.: Topological Strings ind<1. IAS-Princeton preprint, PUPT-1204, IASSNS-HEP-90/71Google Scholar
  13. 13.
    Distler, J., Hlousek, Z., Kawai, H.: Super Liouville theory as a 2D superconformal supergravity theory. Cornell Preprint, CLNS 88/871Google Scholar
  14. 14.
    Distler, J., Kawai, H.: Conformal field theory and 2D quantum gravity. Cornell Preprint, CLNS 88/84Google Scholar
  15. 15.
    Douglas, M.: Strings in less than one dimension and the generalized KdV hierarchies. Phys. Lett. B238, 176 (1990)Google Scholar
  16. 16.
    Douglas, M., Shenker, S.: Strings in less than one dimension. Nucl. Phys. B335, 635 (1990)Google Scholar
  17. 17.
    Feigin, B.L.: The semi-infinite homology of Kac-Moody and Virasoro Lie algebra. Russ. Math. Surv.39, 155 (1984)Google Scholar
  18. 18.
    Feigin, B.L., Fuchs, D.B.: Representations of the Virasoro algebra. New York: Gordon and Breach 1989Google Scholar
  19. 19.
    Feigin, B.L., Fuchs, D.B.: Verma modules over the Virasoro algebra. Lecture Notes Math. vol. 1060, p. 230. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  20. 20.
    Felder, G.: BRST Approach to minimal models. ETH-Honggerberg Preprint, Zürich (1988)Google Scholar
  21. 21.
    Frenkel, I.B., Garland, H., Zuckerman, G.J.: Semi-infinite cohomology and string theory. Proc. Natl. Acad. Sci. USA83, 8442 (1986)Google Scholar
  22. 22.
    Gervais, J.-L., Neveu, A.: Novel triangle relation and absence of tachyon in Liouville string field theory. Nucl. Phys. B238, 125 (1984)Google Scholar
  23. 23.
    Ginsparg, P., Goulian, M., Plesser, M.R., Zinn-Justin, J.: (p, q) string actions. Harvard Preprint HUTP-90/A015Google Scholar
  24. 24.
    Gross, D., Migdal, A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett.64, 127 (1990)Google Scholar
  25. 25.
    Hilton, P.J., Stammbach, U.: A course in homological algebra. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  26. 26.
    Horváth, Z.: Induced 2D supergravity as a theory of free fields. Phys. Lett. B234, 30 (1990)Google Scholar
  27. 27.
    Horváth, Z., Palla, L., Vecsernyés, P.: BRST cohomology and 2D gravity. ITP Budapest No. 468 (1989)Google Scholar
  28. 28.
    Kac, V.G.: Contravariant form for infinite-dimensional Lie algebras and superalgebras. Lecture Notes Phys. vol. 94, p. 441. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  29. 29.
    Kac, V.G., Kazhdan, D.A.: Structure of representations with highest weight of infinite dimensional Lie algebras. Adv. Math.34, 97 (1979)Google Scholar
  30. 30.
    Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D quantum gravity. Mod. Phys. Lett A3, (8), 819 (1988)Google Scholar
  31. 31.
    Lian, B.H.: Semi-infinite homology and 2D quantum gravity. PhD Thesis, Yale University, May 1991Google Scholar
  32. 32.
    Lian, B.H., Zuckerman, G.J.: BRST cohomology and highest weight vectors. I. Commun. Math. Phys.135, 547 (1991)Google Scholar
  33. 33.
    Lian, B.H., Zuckerman, G.J.: New selection rules and physical states in 2D gravity; conformal gauge. Phys. Lett. B254, (3, 4), 417 (1991)Google Scholar
  34. 34.
    Lian, B.H., Zuckerman, G.J.: 2D gravity withc = 1 matter. Phys. Lett. B266, 21–28 (1991)Google Scholar
  35. 35.
    Polchinski, J.: Remarks on Liouville field theory. Texas Preprint, UTTG-19-90Google Scholar
  36. 36.
    Polyakov, A.M.: Quantum geometry of Bosonic strings. Phys. Lett. B103, 207 (1981)Google Scholar
  37. 37.
    Polyakov, A.M.: Quantum geometry of Fermionic strings. Phys. Lett. B103, 211 (1981)Google Scholar
  38. 38.
    Polyakov, A.M.: Quantum gravity in two dimensions. Mod. Phys. Lett. A11, 893 (1987)Google Scholar
  39. 39.
    Rocha, A.: Vacuum vector representations of the Virasoro algebra, in: Vertex operators in mathematics and physics. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  40. 40.
    Rocha, A.: Representation theory of the Virasoro and super Virasoro algebras: irreducible characters, in: The 10th Johns Hopkins workshop on current problems in particle theory. Singapore: World Scientific 1986Google Scholar
  41. 41.
    Rocha, A., Wallach, N.: Highest weight modules over graded Lie algebras: resolutions, filtrations and character formulas. Trans. Math. Soc.277, 133 (1983)Google Scholar
  42. 42.
    Seiberg, N.: Notes on quantum Liouville theory and quantum gravity. Rutgers Preprint, RU-90-29Google Scholar
  43. 43.
    Zuckerman, G.J.: Semi-infinite homology of the Virasoro algebra. Unpublished notes (1986)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Bong H. Lian
    • 1
    • 2
  • Gregg J. Zuckerman
    • 3
  1. 1.Center for Theoretical PhysicsYale UniversityNew HavenUSA
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada
  3. 3.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations