Communications in Mathematical Physics

, Volume 176, Issue 1, pp 133–161 | Cite as

Conformal blocks on elliptic curves and the Knizhnik-Zamolodchikov-Bernard equations

  • Giovanni Felder
  • Christian Wieczerkowski


We give an explicit description of the vector bundle of WZW conformal blocks on elliptic curves with marked points as a subbundle of a vector bundle of Weyl group invariant vector valued theta functions on a Cartan subalgebra. We give a partly conjectural characterization of this subbundle in terms of certain vanishing conditions on affine hyperplanes. In some cases, explicit calculations are possible and confirm the conjecture. The Friedan-Shenker flat connection is calculated, and it is shown that horizontal sections are solutions of Bernard's generalization of the Knizhnik-Zamolodchikov equation.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Vector Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernard, D.: On the Wess-Zumino-Witten model on the torus. Nucl. Phys.B303, 77–93 (1988)Google Scholar
  2. 2.
    Bernard, D.: On the Wess-Zumino-Witten model on Riemann surfaces. Nucl. Phys.B309, 145–174 (1988)Google Scholar
  3. 3.
    Bernard, D., Felder, G.: Fock representations and BRST cohomology in SL(2) current algebra. Commun. Math. Phys.127, 145–168 (1990)Google Scholar
  4. 4.
    Bourbaki, N.: Groupes et algèbres de Lie. Chap. 6, Paris: Masson, 1981Google Scholar
  5. 5.
    Crivelli, M., Felder, G., Wieczerkowski, C.: Generalized hypergeometric functions on the torus and topological representations ofU q(sl 2). Commun. Math. Phys.154, 1–24 (1993); Topological representations ofU q(sl 2) on the torus and the mapping class group. Lett. Math. Phys.30, 71–85 (1994)Google Scholar
  6. 6.
    Etingof, P., Kirillov, A., Jr.: On the affine analogue of Jack's and Macdonald's polynomials. Yale preprint (1994), hep-th/9403168, to appear in Duke Math. J.Google Scholar
  7. 7.
    Etingof, P., Frenkel, I., Kirillov, A., Jr.: Spherical functions on affine Lie groups. Yale preprint (1994), hep-th/9407047Google Scholar
  8. 8.
    Falceto, F., Gawędzki, K.: Chern-Simons states at genus one. To appear in Commun. Math. Phys.Google Scholar
  9. 9.
    Faltings, G.: A proof of the Verlinde formula. Preprint (1993)Google Scholar
  10. 10.
    Feigin, B., Schechtman, V., Varchenko, A.: On algebraic equations satisfied by hypergeometric correlators in WZW models. II. To appear in Commun. Math. Phys.Google Scholar
  11. 11.
    Felder, G.: Conformal field theory and integrable systems associated to elliptic curves. To appear in the Proceedings of the International Congress of Mathematicians, Zürich 1994Google Scholar
  12. 12.
    Felder, G., Wieczerkowski, C.: The Knizhnik-Zamolodchikov equation on the torus. Proceedings of the Vancouver Summer School of Mathematical Quantum Field Theory, August 1993Google Scholar
  13. 13.
    Goodman, F., Wenzl, H.: Littlewood-Richardson coefficients for Hecke algebras at roots of unity. Adv. Math.82, 244–265 (1990)Google Scholar
  14. 14.
    Humphreys, J.E.: Introduction to Lie algebras and representation theory. Berlin-Heidelberg-New York: Springer, 1980Google Scholar
  15. 15.
    Kac, V.G.: Infinite dimensional Lie algebras, Third edition. Cambridge: Cambridge University Press, 1990Google Scholar
  16. 16.
    Steinberg, R.: Conjugacy classes in algebraic groups. Lecture Notes in Mathematics366, Berlin Heidelberg-New York: Springer, 1974Google Scholar
  17. 17.
    Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory onP 1 and monodromy representation of braid groups. Adv. Stud. Pure Math.16, 297–372 (1988)Google Scholar
  18. 18.
    Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure Math.19, 459–566 (1989)Google Scholar
  19. 19.
    Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys.B300[FS22], 360–376 (1988)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Giovanni Felder
    • 1
  • Christian Wieczerkowski
    • 2
  1. 1.Department of MathematicsUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Institut Für Theoretische Physik IUniversität MünsterMünsterGermany

Personalised recommendations