Advertisement

Communications in Mathematical Physics

, Volume 176, Issue 1, pp 1–22 | Cite as

Double wells: Nevanlinna analyticity, distributional Borel sum and asymptotics

  • E. Caliceti
  • V. Grecchi
  • M. Maioli
Article

Abstract

We consider the energy levels of a Stark family, in the parameterj, of quartic double wells with perturbation parameterg:
$$H(g,j) = p^2 + x^2 (1 - gx)^2 - j\left( {gx - \frac{1}{2}} \right).$$
For non-evenj (and for the symmetric casej=0) we prove analyticity in the full Nevanlinna disk ℜg−2 >R−1 of theg2-plane, as predicted by Crutchfield. By means of an approximation we give a heuristic estimate of the asymptotic smallg behaviour, showing the relation between the avoided crossings and the failure of the usual perturbation series.

Keywords

Neural Network Statistical Physic Energy Level Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be-Wu] Bender, C., Wu, T.T.: Phys. Rev. Lett.21, 406 (1968)Google Scholar
  2. [Bu-Gr] Buslaev, V., Grecchi, V.: J. Phys. A: Math. Gen.26, 5541 (1993)Google Scholar
  3. [Ca-Ma] Caliceti, E., Maioli, M.: Ann. Inst. H. Poincaré A38, 175 (1983)Google Scholar
  4. [Ca-Gr-Ma 1] Caliceti, E., Grecchi, V., Maioli, M.: Commun. Math. Phys.104, 163 (1986)Google Scholar
  5. [Ca-Gr-Ma 2] Caliceti, E., Grecchi, V., Maioli, M.: Commun. Math. Phys.113, 173 (1987)Google Scholar
  6. [Ca-Gr-Ma 3] Caliceti, E., Grecchi, V., Maioli, M.: Commun. Math. Phys.113, 625 (1988)Google Scholar
  7. [Ca-Gr-Ma 4] Caliceti, E., Grecchi, V., MaIOLI, m.: Commun. Math. Phys.157, 347 (1993)Google Scholar
  8. [Ca-Gr-Ma 5] Caliceti, E., Grecchi, V., Maioli, M.: Perturbation theory, Borel summability and asymptotics. To appear in: Proceedings of the Conference of the International Euler Institute, St. Petersbourgh, Fall 1993Google Scholar
  9. [Cr] Crutchfield, W.Y.: Phys. Lett.77 B 109 (1978)Google Scholar
  10. [Gr-Gr] Graffi, S., Grecchi, V.: Phys. Lett.121 B, 410 (1983)Google Scholar
  11. [Gr-Gr-Si] Graffi, S., Grecchi, V., Simon, B.: Phys. Lett.B 32, 631 (1970)Google Scholar
  12. [Gr-Ma-Sa] Grecchi, V., Maioli, M., Sacchetti, A.: Commun. Math. Phys.146, 231 (1992)Google Scholar
  13. [He-Si] Herbst, I., Simon, B.: Phys. Lett.78 B 304 (1978)Google Scholar
  14. [Ma-Sa] Maioli, M., Sacchetti, A.: Boll. U. M. I.5-A, 363 (1991)Google Scholar
  15. [Re-Si] Reed, M., Simon, B.: Methods of Modern Mathematical Physics,IV, New York: Academic Press, 1978Google Scholar
  16. [Si] Simon, B.: Ann. Phys.58, 76 (1970)Google Scholar
  17. ['t] 't Hooft, G.: The ways of subnuclear physics. Proceedings of the International School of Subnuclear Physics. Erice (1979), Zichichi, A. (ed.), pp. 943–971. New York: Plenum, 1979Google Scholar
  18. [Vo] Voros, A.: Ann. Inst. H. Poincaré29, 211–338 (1978)Google Scholar
  19. [Vo-Hu] Vock, E., Hunziker, W.: Commun. Math. Phys.83, 281 (1982)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • E. Caliceti
    • 1
  • V. Grecchi
    • 1
  • M. Maioli
    • 2
  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaIntaly
  2. 2.Dipartimento di MatematicaUniversità di ModenaModenaItaly

Personalised recommendations