Skip to main content
Log in

Localization for random Schrödinger operators with correlated potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove localization at high disorder or low energy for lattice Schrödinger operators with random potentials whose values at different lattice sites are correlated over large distances. The class of admissible random potentials for our multiscale analysis includes potentials with a stationary Gaussian distribution whose covariance functionC(x,y) decays as |x−y|−θ, where θ>0 can be arbitrarily small, and potentials whose probability distribution is a completely analytical Gibbs measure. The result for Gaussian potentials depends on a multivariable form of Nelson's best possible hypercontractive estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P.: Absence of diffusion in certain random lattices. Phys. Rev.109, 1492 (1958)

    Google Scholar 

  2. Pastur, L. A.: Spectra of random self adjoint operators. Russ. Math. Surv.28, 1 (1973)

    Google Scholar 

  3. Kunz, H., Souillard, B.: Sur le spectre des operateurs aux differences finies aleatoires. Commun. Math. Phys.78, 201–246 (1980)

    Google Scholar 

  4. Carmona, R., Lacroix, J.: Spectral theory of random Schrödinger operators. Boston, MA: Birkhauser 1990

    Google Scholar 

  5. Gol'dsheid, Ya., Molchanov, S., Pastur, L.: Pure point spectrum of stochastic one dimensional Schrödinger operators. Funct. Anal. Appl.11, 1 (1977)

    Google Scholar 

  6. Frölich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys.101, 21–46 (1985)

    Google Scholar 

  7. Martinelli, F., Scoppola, E.: Introduction to the mathematical theory of Anderson localization. Riv. Nuovo Cim.10, N. 10 (1987)

    Google Scholar 

  8. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys.108, 41–66 (1987)

    Google Scholar 

  9. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys.124, 285–299 (1989)

    Google Scholar 

  10. Lacroix, J.: Localisation pour l'opérateur de Schrödinger aléatoire dans un ruban. Ann. Inst. H. Poincaré serA40, 97–116 (1984)

    Google Scholar 

  11. Klein, A., Lacroix, J., Speis, A.: Localization for the Anderson model on a strip with singular potentials. J. Funct. Anal.94, 135–155 (1990)

    Google Scholar 

  12. Simon, B.: Localization in general one dimensional random systems, I. Jacobi matrices. Commun. Math. Phys.102, 327–336 (1985)

    Google Scholar 

  13. Delyon, F., Levy, Y., Souillard, B.: Anderson localization for one and quasi one-dimensional systems. J. Stat. Phys.41, 375 (1985)

    Google Scholar 

  14. Pastur, L. A.: Random and almost periodic operators: New examples of spectral behaviour. In: IXth International Congress on Mathematical Physics, Simon, B., Truman, A., Davies, I. M., (eds.). Bristol, UK: Adam Hilger 1989

    Google Scholar 

  15. Sinai, Ya. G.: Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys.46, 861–909 (1987)

    Google Scholar 

  16. Chulaevski, V., Sinai, Ya. G.: Anderson localization for the 1 —D discrete Schrödinger operator with two-frequency potential. Commun. Math. Phys.125, 91–112 (1989)

    Google Scholar 

  17. Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one-dimensional quasiperiodic Schrödinger operators. Commun. Math. Phys.132, 5–25 (1990)

    Google Scholar 

  18. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys.88, 151–184 (1983)

    Google Scholar 

  19. Delyon, F., Levy, Y., Souillard, B.: Anderson localization for multidimensional systems at large disorder or low energy. Commun. Math. Phys.100, 463–470 (1985)

    Google Scholar 

  20. Simon, B., Wolff, T.: Singular continuum spectrum under rank one perturbations and localization for random Hamiltonians. Commun. Pure. Appl. Math.39, 75–90 (1986)

    Google Scholar 

  21. von Dreifus, H.: On the effects of randomness in ferromagnetic models and Schrödinger operators. Ph.D. thesis, New York University (1987)

  22. Spencer, T.: Localization for random and quasi-periodic potentials. J. Stat. Phys.51, 1009 (1988)

    Google Scholar 

  23. Dobrushin, R. L., Shlosman, S. B.: Completely analytical Gibbs fields. In: Statistical Physics and Dynamical Systems, Fritz, J., Jaffe, A., Szasz, D., (eds.), pp. 371–403. Boston, MA: Birkhauser 1985

    Google Scholar 

  24. Dobrushin, R. L., Shlosman, S. B.: Completely analytical interactions: Constructive description. J. Stat. Phys.46, 983–1014 (1987)

    Google Scholar 

  25. Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys.B44, 9–15 (1981)

    Google Scholar 

  26. Grenander, V., Szego, G.: Toeplitz forms and their applications. New York, NY: Chelsea 1958

    Google Scholar 

  27. Grenander, V., Rosenblatt, M.: Statistical analysis of stationary time series. New York, NY: Chelsea 1957

    Google Scholar 

  28. Shlosman, S. B.: Private communication

  29. Nelson, E.: The free Markoff field. J. Funct. Anal.12, 211–227 (1973)

    Google Scholar 

  30. Nelson, E.: Probability theory and Euclidean field theory. In: Constructive quantum field theory Velo, G., Wightman, A. (eds.). Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  31. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math.97, 1061–1083 (1975)

    Google Scholar 

  32. Beckner, W.: Inequalities in Fourier analysis. Ann. Math.102, 159–182 (1975)

    Google Scholar 

  33. Brascamp, H. J., Lieb, E. H.: Best constants in Young's inequalities, its converse, and its generalization to more than three functions. Adv. Math.20, 151–173 (1976)

    Google Scholar 

  34. Simon, B.: TheP(Ø)2 Euclidean (Quantum) field theory. Princeton, NJ: Princeton University Press, 1974

    Google Scholar 

  35. Klein, A., Landau, L. J., Shucker, D. S.: Decoupling inequalities for stationary Gaussian processes. Ann. Prob.10, 702–708 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Spencer

Partially supported by the NSF under grant PHY8515288

Partially supported by the NSF under grant DMS8905627

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Dreifus, H., Klein, A. Localization for random Schrödinger operators with correlated potentials. Commun.Math. Phys. 140, 133–147 (1991). https://doi.org/10.1007/BF02099294

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099294

Keywords

Navigation