Communications in Mathematical Physics

, Volume 143, Issue 3, pp 545–558 | Cite as

Reduction formulae for Euclidean Lattice Theories

  • João C. A. Barata
Article

Abstract

LSZ reduction formulae for Euclidean Lattice Theories are presented.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barata, J.C.A., Fredenhagen, K.: Particle scattering in Euclidean lattice field theories. Commun. Math. Phys.138, 507–519 (1991)Google Scholar
  2. 2.
    Hepp, K.: On the connection between the LSZ and the Wightman quantum field theory. Commun. Math. Phys.1, 95–111 (1965)CrossRefGoogle Scholar
  3. 2a.
    Hepp, K.: On the connection between the LSZ and the Wightman quantum field theory. In: Axiomatic field theory. Brandeis 1965. Chretien, M., Deser, S. (eds.) New York: Gordon and Breach 1966Google Scholar
  4. 3.
    Lehmann, H., Symanzik, K., Zimmermann, W.: Zur Formulierung quantisierter Feldtheorien. II Nuovo CimentoI, 205–225 (1955)Google Scholar
  5. 4.
    Lüscher, M.: Selected topics in lattice field theory. Desy-preprint 88-156. Lectures given at the Summer School “Fields, Strings, and Critical Phenomena”, Les Houches, France (1988)Google Scholar
  6. 4a.
    Lüscher, M.: Streutheorie für euklidische skalare Feldtheorien auf einem Raumzeitgitter. Unpublished notes (1985)Google Scholar
  7. 5.
    Lüscher, M., Wollf, U.: How to calculate the elastic scattering matrix in two-dimensional quantum field theory by numerical simulation. Nucl. Phys. B339, 222 (1990)CrossRefGoogle Scholar
  8. 5a.
    Lüscher, M.: Two particle states on a torus and their relation to the scattering matrix. Desypreprint 90-131 (1990)Google Scholar
  9. 6.
    Reed, M., Simon, B.: Methods of modern mathematical physics. Scattering theory, Vol. III. New York: Academic Press 1972–1979Google Scholar
  10. 7.
    Glimm, J., Jaffe, A.: Quantum physics. A functional integral point of view. Second edition. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  11. 8.
    Reed, M., Simon, B.: Methods of modern mathematical physics. Fourier analysis, selfadjointness, Vol. II. New York: Academic Press 1972–1979Google Scholar
  12. 9.
    Eckmann, J.-P., Epstein, H.: Time-ordered products and Schwinger functions. Commun. Math. Phys.64, 95–130 (1979)CrossRefGoogle Scholar
  13. 10.
    Barata, J.C.A.: Scattering states of charged particles in the ℤ2 gauge theories. Commun. Math. Phys.138, 175–191 (1991)Google Scholar
  14. 11.
    Barata, J.C.A.: Scattering theory for Euclidean lattice field theories. Ph.D. Thesis. F.U. Berlin 1989Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • João C. A. Barata
    • 1
  1. 1.Instituto de Física da Universidade de São PauloSão PauloBrasil

Personalised recommendations