Communications in Mathematical Physics

, Volume 143, Issue 3, pp 451–466 | Cite as

Central limit theorems for the one-dimensional Rayleigh gas with semipermeable barriers

  • L. Erdös
  • Dao q. Tuyen


A version of the one-dimensional Rayleigh gas is considered: a point particle of massM (molecule), confined to the unit interval [0,1], is surrounded by an infinite ideal gas of point particles of mass 1 (atoms). The molecule interacts with the atoms and with the walls via elastic collision. Central limit theorems are proved for a wide class of additive functionals of this system (e.g. the number of collisions with the walls and the total length of the molecular path).


Neural Network Statistical Physic Complex System Nonlinear Dynamics Limit Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boldrighini, C.: Bernoulli property for a one-dimensional system with localized interaction. Commun. Math. Phys.103, 499–514 (1986)CrossRefGoogle Scholar
  2. 2.
    Boldrighini, C., Pellegrinotti, A., Presutti, E., Sinai, Ya. G., Soloveychik, M. R.: Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics. Commun. Math. Phys.101, 363–382 (1985)CrossRefGoogle Scholar
  3. 3.
    Doob, J.: Stochastic processes, New York: Wiley 1953Google Scholar
  4. 4.
    Erdös, L., Tuyen, D. Q.: Ergodic properties of the multidimensional Rayleigh gas with a semipermeable barrier. To appear in J. Stat. Phy.Google Scholar
  5. 5.
    Goldstein, S., Lebowitz, J. L., Ravishankar, K.: Ergodic properties of a system in contact with a heat bath: a one dimensional model. Commun. Math. Phys.85, 419–427 (1982)CrossRefGoogle Scholar
  6. 6.
    Goldstein, S., Lebowitz, J. L., Ravishankar, K.: Approach to equilibrium in models of a system in contact with a heat bath. J. Stat. Phys.43, 303–315 (1986)CrossRefGoogle Scholar
  7. 7.
    Harris, T. E.: Diffusions with collisions between particles. J. Appl. Probab.2, 323–338 (1965)Google Scholar
  8. 8.
    Orey, S.: Recurrent Markov chains. Pacific J. Math.9, 3, 805–827 (1959)Google Scholar
  9. 9.
    Sinai, Ya. G., Soloveychik, M. R.: One-dimensional classical massive particle in the ideal gas. Commun. Math. Phys.104, 423–443 (1986)CrossRefGoogle Scholar
  10. 10.
    Soloveychik, M. R.: Ergodic properties of a system of statistical mechanics with an external potential (in Russian). Izv. Akad. Nauk SSSR Ser. Mat.53, 1, 179–199 (1989)Google Scholar
  11. 11.
    Soloveychik, M. R.: Sufficient conditions for Bernoulliness of aK-system and its application in the classical statistical mechanics (in Russian). Mat. Zametki45, 2, 105–112 (1989)Google Scholar
  12. 12.
    Spitzer, F.: Uniform motion with elastic collisions of an infinite particle system. J. Math. Mech.18, 973–989 (1969)Google Scholar
  13. 13.
    Szász, D., Tóth, B.: Bounds for the limiting variance of the “heavy particle” inR 1. Commun. Math. Phys.104, 445–455 (1986)CrossRefGoogle Scholar
  14. 14.
    Szász, D., Tóth, B.: Towards a unified dynamical theory of the Brownian particle in an ideal gas. Commun. Math. Phys.111, 41–62 (1987)CrossRefGoogle Scholar
  15. 15.
    Szász, D., Tóth, B.: A dynamical theory of Brownian motion for the Rayleigh gas. J. Stat. Phys.47, 681–693 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • L. Erdös
    • 1
    • 2
  • Dao q. Tuyen
    • 3
  1. 1.Eötvös Loránd UniversityBudapestHungary
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA
  3. 3.Institute of Mathematics of HanoiHanoiVietnam

Personalised recommendations